Schaaf-Yang Syndrome (SYS) is a genetic disorder caused by truncating pathogenic variants in the paternal allele of the maternally imprinted, paternally expressed gene MAGEL2, located in the Prader-Willi critical region 15q11-15q13. SYS is a neurodevelopmental disorder that has clinical overlap with Prader-Willi Syndrome in the initial stages of life but becomes increasingly distinct throughout childhood and adolescence. Here, we describe the phenotype of an international cohort of 78 patients with nonsense or frameshift mutations in MAGEL2. This cohort includes 43 individuals that have been reported previously, as well as 35 newly identified individuals with confirmed pathogenic genetic variants. We emphasize that intellectual disability/developmental delay, autism spectrum disorder, neonatal hypotonia, infantile feeding problems, and distal joint contractures are the most consistently shared features of patients with SYS. Our results also indicate that there is a marked prevalence of infantile respiratory distress, gastroesophageal reflux, chronic constipation, skeletal abnormalities, sleep apnea, and temperature instability. While there are many shared features, patients with SYS are characterized by a wide phenotypic spectrum, including a variable degree of intellectual disability, language development, and motor milestones. Our results indicate that the variation in phenotypic severity may depend on the specific location of the truncating mutation, suggestive of a genotype-phenotype association. This evidence may be useful in both prenatal and pediatric genetic counseling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585857PMC
http://dx.doi.org/10.1002/ajmg.a.40650DOI Listing

Publication Analysis

Top Keywords

schaaf-yang syndrome
8
shared features
8
features patients
8
patients sys
8
syndrome overview
4
overview report
4
report individuals
4
individuals schaaf-yang
4
sys
4
syndrome sys
4

Similar Publications

Roles of SNORD115 and SNORD116 ncRNA clusters during neuronal differentiation.

Nat Commun

November 2024

Institute for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland.

In the snoRNA host gene SNHG14, 29 consecutive introns each generate SNORD116, and 48 tandem introns encode SNORD115. Loss of SNORD116 expression, but not of SNORD115, is linked to the neurodevelopmental disease Prader-Willi syndrome. SNORD116 and SNORD115 resemble box C/D small nucleolar RNAs (snoRNAs) but lack known targets.

View Article and Find Full Text PDF

Background: MAGEL2 is an autism susceptibility gene whose deficiency has been associated with autism-related behaviors in animal models and in syndromic human autism spectrum disorders (ASDs) such as Schaaf-Yang syndrome, but has not been studied in the broader autism spectrum. Given the capabilities of long-read sequencing technologies, this pilot study used a targeted nanopore sequencing approach to simultaneously examine MAGEL2 DNA sequence and methylation in adults with high-functioning autism (HFA) compared to neurotypical controls (NC).

Methods: Using DNA extracted from peripheral blood, Cas9-targeted nanopore DNA sequencing was used to analyze MAGEL2, including its entire regulatory construct (chr15:23639316-23651466), for sequence variation and 5-methyl-cytosine (5mC) modification in a cohort of adults with HFA compared to sex- and age-matched NC.

View Article and Find Full Text PDF

Neuropeptide therapeutics to repress lateral septum neurons that disable sociability in an autism mouse model.

Cell Rep Med

November 2024

Institut de Génomique Fonctionnelle, Department of Neuroscience, Stress Hormones and Plasticity Unit, University of Montpellier, INSERM, CNRS, 34090 Montpellier, France. Electronic address:

Confronting oxytocin and vasopressin deficits in autism spectrum disorders and rare syndromes brought promises and disappointments for the treatment of social disabilities. We searched downstream of oxytocin and vasopressin for targets alleviating social deficits in a mouse model of Prader-Willi syndrome and Schaaf-Yang syndrome, both associated with high prevalence of autism. We found a population of neurons in the lateral septum-activated on termination of social contacts-which oxytocin and vasopressin inhibit as per degree of peer affiliation.

View Article and Find Full Text PDF

MAGEL2 (patho-)physiology and Schaaf-Yang syndrome.

Dev Med Child Neurol

January 2025

Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.

Schaaf-Yang syndrome (SYS) is a complex neurodevelopmental disorder characterized by autism spectrum disorder, joint contractures, and profound hypothalamic dysfunction. SYS is caused by variants in MAGEL2, a gene within the Prader-Willi syndrome (PWS) locus on chromosome 15. In this review, we consolidate decades of research on MAGEL2 to elucidate its physiological functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!