Electrochemical carbon dioxide reduction (CO ) is a promising technology to use renewable electricity to convert CO into valuable carbon-based products. For commercial-scale applications, however, the productivity and selectivity toward multi-carbon products must be enhanced. A facile surface reconstruction approach that enables tuning of CO -reduction selectivity toward C products on a copper-chloride (CuCl)-derived catalyst is reported here. Using a novel wet-oxidation process, both the oxidation state and morphology of Cu surface are controlled, providing uniformity of the electrode morphology and abundant surface active sites. The Cu surface is partially oxidized to form an initial Cu (I) chloride layer which is subsequently converted to a Cu (I) oxide surface. High C selectivity on these catalysts are demonstrated in an H-cell configuration, in which 73% Faradaic efficiency (FE) for C products is reached with 56% FE for ethylene (C H ) and overall current density of 17 mA cm . Thereafter, the method into a flow-cell configuration is translated, which allows operation in a highly alkaline medium for complete suppression of CH production. A record C FE of ≈84% and a half-cell power conversion efficiency of 50% at a partial current density of 336 mA cm using the reconstructed Cu catalyst are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201804867DOI Listing

Publication Analysis

Top Keywords

surface reconstruction
8
productivity selectivity
8
catalyst reported
8
current density
8
surface
6
reconstruction route
4
route high
4
high productivity
4
selectivity
4
selectivity electroreduction
4

Similar Publications

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Anatomic-Based Diagnosis and Filler Injection Techniques: Chin Augmentation and Jawline Contouring.

J Craniofac Surg

January 2025

Department of Oral Biology, Division in Anatomy and Developmental Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry.

Chin augmentation and jawline contouring have emerged as significant procedures in aesthetic medicine, addressing both structural and age-related changes in the lower face. This review explores anatomic-based diagnosis and filler injection techniques for these treatments. Ethnic variations in facial structure necessitate different approaches, with Western patients often seeking jawline definition, while Asian patients frequently require chin projection.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!