The multifaceted role of autophagy in cancer and the microenvironment.

Med Res Rev

Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Published: March 2019

Autophagy is a crucial recycling process that is increasingly being recognized as an important factor in cancer initiation, cancer (stem) cell maintenance as well as the development of resistance to cancer therapy in both solid and hematological malignancies. Furthermore, it is being recognized that autophagy also plays a crucial and sometimes opposing role in the complex cancer microenvironment. For instance, autophagy in stromal cells such as fibroblasts contributes to tumorigenesis by generating and supplying nutrients to cancerous cells. Reversely, autophagy in immune cells appears to contribute to tumor-localized immune responses and among others regulates antigen presentation to and by immune cells. Autophagy also directly regulates T and natural killer cell activity and is required for mounting T-cell memory responses. Thus, within the tumor microenvironment autophagy has a multifaceted role that, depending on the context, may help drive tumorigenesis or may help to support anticancer immune responses. This multifaceted role should be taken into account when designing autophagy-based cancer therapeutics. In this review, we provide an overview of the diverse facets of autophagy in cancer cells and nonmalignant cells in the cancer microenvironment. Second, we will attempt to integrate and provide a unified view of how these various aspects can be therapeutically exploited for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585651PMC
http://dx.doi.org/10.1002/med.21531DOI Listing

Publication Analysis

Top Keywords

multifaceted role
12
cancer microenvironment
12
cancer
9
autophagy
8
autophagy cancer
8
microenvironment autophagy
8
cancer therapy
8
immune cells
8
immune responses
8
cells
6

Similar Publications

Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.

View Article and Find Full Text PDF

The inferior colliculus (IC) has traditionally been regarded as an important relay in the auditory pathway, primarily involved in relaying auditory information from the brainstem to the thalamus. However, this study uncovers the multifaceted role of the IC in bridging auditory processing, sensory prediction, and reward prediction. Through extracellular recordings in monkeys engaged in a sound duration-based deviation detection task, we observed a 'climbing effect' in neuronal firing rates, indicative of an enhanced response over sound sequences linked to sensory prediction rather than reward anticipation.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

Cholera, a disease caused by , remains a pervasive public health threat, particularly in regions with inadequate water sanitation and hygiene infrastructure, such as Bangladesh. This review explores the complex interplay between water pollution and cholera transmission in Bangladesh, highlighting how contaminated water bodies serve as reservoirs for . A key focus is the potential role of probiotics as a novel intervention approach for cholera prevention and management.

View Article and Find Full Text PDF

Harnessing the power of cinnamon oil: A review of its potential as natural biopesticide and its implications for food security.

Heliyon

January 2025

Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Complex Cibinong Science Center-BRIN, Cibinong, 16911, Jawa Barat, Indonesia.

The escalating concerns about the environmental and health impacts of synthetic pesticides have intensified the search for sustainable and effective alternatives. Cinnamon oil, derived from the bark of Cinnamomum species, has emerged as a promising candidate in this arena due to its potent biopesticidal properties. This review explores the multifaceted role of cinnamon oil in agricultural pest management, emphasizing its potential to contribute significantly to food security.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!