A method has been developed for the quantitative extraction of collagenase from as little as one 19-day-fetal-mouse calvarium. About 20-40 munits of collagenase are extracted per mg of tissue, all in a latent form that, after proper activation, shows the typical properties of mammalian collagenase. Culturing the calvaria for 2 days with parathyroid hormone (PTH) increases their procollagenase content up to 3-fold and induces bone resorption. Both PTH effects are prevented by cycloheximide, but not by indomethacin. Calcitonin inhibits resorption without affecting the PTH-induced procollagenase synthesis. The role of this synthesis is discussed in relation to the mechanisms of bone resorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1147359PMC
http://dx.doi.org/10.1042/bj2390793DOI Listing

Publication Analysis

Top Keywords

bone resorption
12
direct extraction
4
extraction assay
4
bone
4
assay bone
4
bone tissue
4
collagenase
4
tissue collagenase
4
collagenase relation
4
relation parathyroid-hormone-induced
4

Similar Publications

Yak milk inhibits osteoclast differentiation by suppressing TRPV5 expression.

J Dairy Sci

January 2025

Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.

Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.

View Article and Find Full Text PDF

Our aim was to determine the effects of P intake on P balance, serum parathyroid hormone (PTH) levels and bone resorption during the final 4 weeks prepartum and the first 8 weeks of lactation. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged according to a 2 × 2 factorial design. The experimental diets contained 3.

View Article and Find Full Text PDF

This study analyzed the association of romosozumab, a human monoclonal antibody with bone-forming and bone resorption-inhibiting effects, and bisphosphonates with the development of cardiovascular disease among patients with osteoporosis. A new-user design was employed to address selection bias, and instrumental variable analysis was used to address confounding by indication. Japanese patients aged ≥40 years, diagnosed with osteoporosis or experienced a fragility fracture, were admitted to medical facilities covered by a commercial administrative claims database, and newly prescribed romosozumab or bisphosphonates after the commercialization of romosozumab in Japan (March 4, 2019) were included based on verification of a 180-day washout period.

View Article and Find Full Text PDF

Objective: To evaluate the effects of tinidazole (TNZ) combined with minocycline (MINO) on therapeutic effectiveness, bone resorption, and inflammation in peri-implantitis (PI).

Methods: This retrospective study included 96 PI patients admitted between January 2023 and February 2024. Patients were divided into a control group (n = 46) treated with MINO and a research group (n = 50) treated with TNZ plus MINO.

View Article and Find Full Text PDF

Unlabelled: This case-control study investigated the impact of switching from bisphosphonates to denosumab, teriparatide, or romosozumab in postmenopausal osteoporosis. Romosozumab demonstrated the most significant improvements in bone mineral density, particularly in the lumbar spine and total hip, by reducing bone resorption and increasing bone formation markers.

Purpose: To investigate the impact of switching from bisphosphonates (BP) to denosumab (DMAb), teriparatide (TPTD), or romosozumab (ROMO) in postmenopausal osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!