The efficiency by which animals utilize dietary energy is fundamental to the cost of production for protein of animal origin and to the carbon footprint an animal industry has. Hence, the development of cost effective methodology for determining these measurements of efficiency is important. The objective of the present study was to investigate the use of infrared thermography in a rapid, non-steady state method for measuring energy loss in cattle. Data from 241 yearling bulls and steers as well as heifers and mature cows are presented. Infrared images were collected following a 24h feed withdrawal period. The infrared thermal response in these animals was significantly ranked (P < 0.03) with conventional measurements of feed efficiency using residual feed intake values for animals demonstrated to be within a thermal neutral zone. When animals were not within a thermal neutral zone there was no significant ranking. The data suggests that the use of a non-steady state approach using infrared thermography for identifying metabolic efficiency in animals may be a more rapid and less expensive method for identifying differences in energy utilization. The data also demonstrates the importance of maintaining thermal neutrality when measuring metabolic efficiency irrespective of the methodology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174544 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2018.e00843 | DOI Listing |
Glob Chang Biol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), São Gonçalo do Amarante 59291-727, Brazil.
The durability of reinforced concrete is associated with several factors that can trigger the corrosion of reinforcement bars. Among these factors, the most significant are chloride-ion attack and carbonation. This study evaluated, through accelerated testing, self-compacting concretes (SCCs) with reduced cement content in binary, ternary, and quaternary mixtures using high-early-strength Portland cement, fly ash (FA), metakaolin (MK), and hydrated lime (HL).
View Article and Find Full Text PDFPlant Methods
January 2025
Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands.
Background: Quantifying plant transpiration via thermal imaging is desirable for applications in agriculture, plant breeding, and plant science. However, thermal imaging under natural non-steady state conditions is currently limited by the difficulty of quantifying thermal properties of leaves, especially specific heat capacity (C). Existing literature offers only rough estimates of C and lacks simple and accurate methods to determine it.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Science, Beijing Forestry University, Beijing, China.
Background: Estimating the CO response of forest trees is of great significance in plant photosynthesis research. CO response measurement is traditionally employed under steady state conditions. With the development of open-path gas exchange systems, the Dynamic Assimilation Technique (DAT), allows measurement under non-steady state conditions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China.
The relative impacts of biochemical and stomatal limitations on photosynthesis during photosynthetic induction have been well studied for diverse plants under ambient CO concentration (). However, a knowledge gap remains regarding how the various photosynthetic components limit duction efficiency under elevated CO. In this study, we experimentally investigated the influence of elevated CO (from 400 to 800 μmol mol) on photosynthetic induction dynamics and its associated limitation components in two broadleaved tree species, and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!