Octopaminergic Signaling Mediates Neural Regulation of Innate Immunity in Caenorhabditis elegans.

mBio

Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA

Published: October 2018

Upon pathogen infection, the nervous system regulates innate immunity to confer coordinated protection to the host. However, the precise mechanisms of such regulation remain unclear. Previous studies have demonstrated that OCTR-1, a putative G protein-coupled receptor for catecholamine, functions in the sensory neurons designated "ASH" to suppress innate immune responses in It is unknown what molecules act as OCTR-1 ligands in the neural immune regulatory circuit. Here we identify neurotransmitter octopamine (OA) as an endogenous ligand for OCTR-1 in immune regulation and show that the OA-producing RIC neurons function in the OCTR-1 neural circuit to suppress innate immunity. RIC neurons are deactivated in the presence of pathogens but transiently activated by nonpathogenic bacteria. Our data support a model whereby an octopaminergic immunoinhibitory pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to a myriad of human health concerns, our study could potentially benefit the development of more-effective treatments for innate immune disorders. Insufficient or excessive immune responses to pathogen infection are major causes of disease. Increasing evidence indicates that the nervous system regulates the immune system to help maintain immunological homeostasis. However, the precise mechanisms of this regulation are largely unknown. Here we show the existence of an octopaminergic immunoinhibitory pathway in Our study results indicate that this pathway is tonically active under normal conditions to maintain immunological homeostasis or suppress unwanted innate immune responses but downregulated upon pathogen infection to allow enhanced innate immunity. As excessive innate immune responses have been linked to human health conditions such as Crohn's disease, rheumatoid arthritis, atherosclerosis, diabetes, and Alzheimer's disease, elucidating octopaminergic neural regulation of innate immunity could be helpful in the development of new treatments for innate immune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178624PMC
http://dx.doi.org/10.1128/mBio.01645-18DOI Listing

Publication Analysis

Top Keywords

innate immune
28
innate immunity
24
immune responses
24
pathogen infection
16
innate
13
maintain immunological
12
immunological homeostasis
12
immune
11
neural regulation
8
regulation innate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!