Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants.

Int J Mol Sci

Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.

Published: October 2018

WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, , based on the maize drought transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of improved the tolerance to drought and heat in transgenic by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213049PMC
http://dx.doi.org/10.3390/ijms19103046DOI Listing

Publication Analysis

Top Keywords

drought heat
12
wrky transcription
8
transcription factor
8
stress responses
8
responsive element
8
drought
7
stress
5
maize wrky
4
zmwrky106
4
factor zmwrky106
4

Similar Publications

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Orogeny and High Pollen Flow as Driving Forces for High Genetic Diversity of Endangered (Franch.) Pax Endemic to China.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

(Franch.) Pax is an endangered species endemic to China, mainly scattered in the Qinling-Daba Mountains. The genetic diversity of 17 natural populations were analyzed by nuclear DNA (nDNA) and chloroplast DNA (cpDNA) to explore the driving forces for its microevolution.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Gene Family in Maize ().

Genes (Basel)

January 2025

Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.

Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize () () gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways.

View Article and Find Full Text PDF

The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals.

Antioxidants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.

View Article and Find Full Text PDF

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!