Design of an Aluminum/Polymer Plasmonic 2D Crystal for Label-Free Optical Biosensing.

Sensors (Basel)

Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain.

Published: October 2018

A design study of a nanostructured two-dimensional plasmonic crystal based on aluminum and polymeric material for label-free optical biosensing is presented. The structure is formed of Al nanohole and nanodisk array layers physically separated by a polymeric film. The photonic configuration was analyzed through finite-difference time-domain (FDTD) simulations. The calculated spectral reflectance of the device exhibits a surface plasmon polariton (SPP) resonance feature sensitive to the presence of a modeled biolayer adhered onto the metal surfaces. Simulations also reveal that the Al disks suppress an undesired SPP resonance, improving the device performance in terms of resolution as compared to that of a similar configuration without Al disks. On the basis of manufacturability issues, nanohole diameter and depth were considered as design parameters, and a multi-objective optimization process was employed to determine the optimum dimensional values from both performance and fabrication points of view. The effect of Al oxidation, which is expected to occur in an actual device, was also studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211116PMC
http://dx.doi.org/10.3390/s18103335DOI Listing

Publication Analysis

Top Keywords

plasmonic crystal
8
label-free optical
8
optical biosensing
8
spp resonance
8
design aluminum/polymer
4
aluminum/polymer plasmonic
4
crystal label-free
4
biosensing design
4
design study
4
study nanostructured
4

Similar Publications

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.

View Article and Find Full Text PDF

Since the initial publication on the first TiCT MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in biomedical applications.

View Article and Find Full Text PDF

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Chiral plasmonic crystals with 5-fold symmetries were synthesized from Au icosahedra, decahedra, and pentatwinned nanorods, unraveling the effects of seed twinning and aspect ratio on chiral overgrowth directed by L-glutathione. The influence of seed size on the overgrowth from pentatwinned nanorods was also studied, giving insight into the role volumetric strain plays in chiral crystal formation. Single particle reconstructions were obtained using electron tomography, and optical simulations on the measured structures verify their optical chirality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!