The Chagos Archipelago is geographically remote and isolated from most direct anthropogenic pressures. Here, we quantify the abundance and diversity of decapod crustaceans inhabiting dead coral colonies, representing a standardised microhabitat, across the Archipelago. Using morphological and molecular techniques we recorded 1868 decapods from 164 nominal species within 54 dead coral colonies, but total species estimates (Chao1 estimator) calculate at least 217 species. Galatheids were the most dominant taxa, though alpheids and hippolytids were also very abundant. 32% of species were rare, and 46% of species were found at only one atoll. This prevalence of rarer species has been reported in other cryptofauna studies, suggesting these assemblages maybe comprised of low-abundance species. This study provides the first estimate of diversity for reef cryptofauna in Chagos, which will serve as a useful baseline for global comparisons of coral reef biodiversity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.07.063DOI Listing

Publication Analysis

Top Keywords

chagos archipelago
8
dead coral
8
coral colonies
8
species
7
exceptional biodiversity
4
biodiversity cryptofaunal
4
cryptofaunal decapods
4
decapods chagos
4
archipelago central
4
central indian
4

Similar Publications

Recording sand temperatures has become routine at many sea turtle nesting sites across the world given the impacts of incubation temperatures on hatchling sex ratios. However, the extent of thermal variability found at a nesting site has previously received little attention. Here we examine empirical sand temperature records across five atolls extending 250 km in the Chagos archipelago, Indian Ocean, between October 2012 and July 2023 and quantify the extent of spatial and temporal thermal variability.

View Article and Find Full Text PDF

Coral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored.

View Article and Find Full Text PDF

Mobile organisms like seabirds can provide important nutrient flows between ecosystems, but this connectivity has been interrupted by the degradation of island ecosystems. Island restoration (via invasive species eradications and the restoration of native vegetation) can reestablish seabird populations and their nutrient transfers between their foraging areas, breeding colonies, and adjacent nearshore habitats. Its diverse benefits are making island restoration increasingly common and scalable to larger islands and whole archipelagos.

View Article and Find Full Text PDF

Big brands impact small islands: Sources of plastic pollution in a remote and protected archipelago.

Mar Pollut Bull

June 2024

Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom; Centre of Ecology and Conservation, University of Exeter, Penryn Campus, United Kingdom.

Remote islands are disproportionately affected by plastic pollution, often originating from elsewhere, so it is important to understand its origins, to stop debris entering the ocean at their source. We investigated the origins of beached plastic drink bottles in the Chagos Archipelago, a large remote Marine Protected Area (MPA) in the Indian Ocean. We recorded the brands, countries of manufacture, types of drink, and ages of plastic bottles and their lids.

View Article and Find Full Text PDF

Coral reefs are increasingly impacted by climate-induced warming events. However, there is limited empirical evidence on the variation in the response of shallow coral reef communities to thermal stress across depths. Here, we assess depth-dependent changes in coral reef benthic communities following successive marine heatwaves from 2015 to 2017 across a 5-25 m depth gradient in the remote Chagos Archipelago, Central Indian Ocean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!