Variability in sediment-water carbonate chemistry and bivalve abundance after bivalve settlement in Long Island Sound, Milford, Connecticut.

Mar Pollut Bull

NOAA Fisheries, Milford Laboratory, 212 Rogers Avenue, Milford, CT 06460, United States of America.

Published: October 2018

Cues that drive bivalve settlement and abundance in sediments are not well understood, but recent reports suggest that sediment carbonate chemistry may influence bivalve abundance. In 2013, we conducted field experiments to assess the relationship between porewater sediment carbonate chemistry (pH, alkalinity (A), dissolved inorganic carbon (DIC)), grain size, and bivalve abundance throughout the July-September settlement period at two sites in Long Island Sound (LIS), CT. Two dominate bivalves species were present during the study period Mya arenaria and Nucula spp. Akaike's linear information criterion models, indicated 29% of the total community abundance was predicted by grain size, salinity, and pH. When using 2 weeks of data during the period of peak bivalve settlement, pH and phosphate concentrations accounted 44% of total bivalve community composition and 71% of Nucula spp. abundance with pH, phosphate, and silica. These results suggest that sediment carbonate chemistry may influence bivalve abundance in LIS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.07.025DOI Listing

Publication Analysis

Top Keywords

carbonate chemistry
16
bivalve abundance
16
bivalve settlement
12
sediment carbonate
12
bivalve
8
long island
8
island sound
8
chemistry influence
8
influence bivalve
8
grain size
8

Similar Publications

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.

View Article and Find Full Text PDF

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

Synthesis of naphthalene derivatives via nitrogen-to-carbon transmutation of isoquinolines.

Sci Adv

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

Heteroarene skeletal editing is gaining popularity in synthetic chemistry. Transmuting single atoms generates molecules that have distinctly varied properties, thereby fostering potent molecular exchanges that can be extensively used to synthesize functional molecules. Herein, we present a convenient protocol for nitrogen-carbon single-atom transmutations in isoquinolines, which is inspired by the Wittig reaction and enables easy access to substituted naphthalene derivatives.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!