The primary aim of this research was to identify the physicochemical properties of the oil and water-in-oil (W/O) emulsions used during a NOFO Oil-on-Water field trials that reduced the performance of the skimmers recovery efficacy during the trials. Extensive studies were performed at SINTEF laboratories with the residues of oil topped (i.e. evaporative loss of crude oil components by distillation process at large scale) for the field trial and compared it with different residues of oil topped by bench scale laboratory procedures. In order to obtain a sufficient stable W/O emulsion for the field trial, bunker fuel oil (IFO380) and various concentrations of an emulsifier (Paramul®) were also added to the residues of oil topped on large scale and investigated through interfacial tension, contact angle, droplet adhesion and "dip and withdraw" tests. The investigations revealed that the addition of an emulsifier lowered the interfacial tension of oil residues, which consequently reduced the adherence properties of the oil and emulsions to the surface of the skimmer material. Too high concentration of an emulsifier (>0,5%) also had a negative effect on the stability of W/O emulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2018.06.017 | DOI Listing |
Int J Biol Macromol
January 2025
Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:
The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Product Packaging and Logistics, College of Packing and Engineering, Jinan University, Zhuhai 519070, China. Electronic address:
2,4-di-tert-butylphenol (2,4-DTBP) is an additive used in food packaging. The inhibitory effects of 2,4-DTBP on pancreatic lipase (PL) were investigated in this study. Kinetic analysis indicated that 2,4-DTBP competitively and reversibly inhibited PL activity.
View Article and Find Full Text PDFAnal Methods
January 2025
Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.
View Article and Find Full Text PDFZ Naturforsch C J Biosci
January 2025
Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences of Meknes, 11201 Zitoune-Meknes B.P, Meknes, Meknes, Morocco.
In order to search for new chemotypes and to carry out a comparative study with the literature, the current study investigated the chemical composition of the essential oil of the flowers of (L.) ssp. using gas chromatography coupled with mass spectrometry (GC-MS).
View Article and Find Full Text PDFIn Silico Pharmacol
December 2024
Agro-Technology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam India.
A network pharmacology approach was used to construct comprehensive pharmacological networks, elucidating the interactions between agarwood compounds and key biological targets associated with cancer pathways. We have employed a combination of network pharmacology, molecular docking and molecular dynamics to unravel agarwood plants' active components and potential mechanisms. Reported 23 molecules were collected from the agarwood plants and considered to identify molecular targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!