A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. | LitMetric

Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs.

Mar Pollut Bull

Boston University Marine Program, 5 Cummington Mall, Boston, MA 02215, United States of America; Department of Biology Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America. Electronic address:

Published: October 2018

Seagrasses are among the most productive shallow water ecosystems, serving a diverse assemblage of fish and invertebrates. Tropical seagrass communities are dominated by the turtle grass Thalassia testudinum, whose wide, flattened blades host diverse epibiont communities. Amidst its epibionts, T. testudinum may also be accumulating microplastics, which are a ubiquitous marine pollutant even in remote locales. To assess the extent of microplastic accumulation, seagrass samples were collected from Turneffe Atoll, which lies offshore but parallel with a major urban center. Seventy-five percent of Thalassia blades had encrusted microplastics, with microfibers occurring more than microbeads and chips by a ratio of 59:14. Grazers consumed seagrasses with higher densities of epibionts. Potential mechanisms for microplastic accumulation include entrapment by epibionts, or attachment via biofilms. This study is the first to document microplastics on marine vascular plants, suggesting that macroherbivory is a viable pathway for microplastic pollution to enter marine food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2018.08.024DOI Listing

Publication Analysis

Top Keywords

thalassia testudinum
8
marine food
8
food webs
8
microplastic accumulation
8
testudinum potential
4
potential vector
4
vector incorporating
4
microplastics
4
incorporating microplastics
4
microplastics benthic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!