Paratuberculosis is a chronic disease caused by Mycobacterium avium subsp. paratuberculosis (Map). The disease causes economic losses and, therefore, it is imperative to follow proper control strategies, which should include an effective vaccine. Several strategies have assessed the virulence and immune response of Map strains that could be used as a vaccine. This study evaluates the degree of virulence, immune response, and protection of Argentinian strains of Map with different genotype in a murine model. Four local isolates (Cattle type) with different genotypes (analyzed by MIRU-VNTR and SSRs) were selected and evaluated in a virulence assay in BALB/c mice. This assay allowed us to differentiate virulent and low-virulence Map strains. The less virulent strains (1543/481 and A162) failed to induce a significant production of the proinflammatory cytokine IFNg, whereas the virulent strain 6611 established infection along with a proinflammatory immune response. On the other hand, the virulent strain 1347/498 was efficient in establishing a persistent infection, but failed to promote an important Th1 response compared with 6611 at the evaluated time. We selected the low-virulence strain 1543/498 as a live vaccine and the virulent strain 6611 as a live and inactivated vaccine in a protection assay in mice. Strain 1543/481 failed to protect the animals from challenge, whereas strain 6611, in its live and inactivated form, significantly reduced the CFUs count in the infected mice, although they had different immunological response profiles. The inactivated virulent strain 6611 is a potential vaccine candidate against paratuberculosis to be tested in cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2018.09.009 | DOI Listing |
Anim Microbiome
January 2025
Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193, Cerdanyola del Vallès, Spain.
Background: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine industry worldwide, especially virulent variants arising during the last years, such as Spanish PRRSV-1 Rosalia strain. The role of the nasal microbiota in respiratory viral infections is still to be unveiled but may be promisingly related with the health status of the animals and thus, their susceptibility. The goal of this project was to study the nasal microbiota composition of piglets during a highly virulent PRRSV-1 outbreak comparing animals that died due to the infection with animals that survived it.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.
View Article and Find Full Text PDFSci Rep
January 2025
Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China.
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.
View Article and Find Full Text PDFPoult Sci
January 2025
Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, PR China. Electronic address:
Escherichia coli (E. coli) is a significant pathogen responsible for intestinal infections and foodborne diseases. The rise of antibiotic resistance poses a significant challenge to global public health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!