A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. | LitMetric

Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal.

Colloids Surf B Biointerfaces

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. Electronic address:

Published: January 2019

Antibiotics have been widely used in clinical applications to treat pathogenic infections at present, but the problem of drug-resistance associated with the abuse of antibiotics has become a large threat to human beings. Herein, we developed an antibacterial nanoagent by coating quaternized chitosan (QCS) on the surface of FeO nanoparticles-anchored graphene oxide (GO), which enabled QCS and GO to achieve synergistic effects on killing the drug-resistant bacteria. Systematical antibacterial experiments showed that the prepared nanoagent had antibacterial ability, which was significantly enhanced after the introduction of near-infrared (NIR). Importantly, the nanoagent could be easily recycled and reused without the reduction of the antibacterial ability. During the test time, this nanoagent exhibited no obviously toxic side effect to cells. Given the above advantages, we anticipate that the nanoagent has a promising future in various applications such as wound disinfection, water purification, and surface sterilization of medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.09.070DOI Listing

Publication Analysis

Top Keywords

antibacterial ability
8
nanoagent
6
biocompatible graphene-based
4
graphene-based nanoagent
4
nanoagent nir
4
nir magnetism
4
magnetism dual-responses
4
dual-responses effective
4
effective bacterial
4
bacterial killing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!