360° multiparametric imaging atomic force microscopy: A method for three-dimensional nanomechanical mapping.

Ultramicroscopy

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China; City University of Hong Kong Shenzhen Research Institute, Shen Zhen 518057, China. Electronic address:

Published: January 2019

AI Article Synopsis

  • Atomic Force Microscopy (AFM) is crucial for imaging and analyzing materials on a micro and nanoscale, but fully mapping 3D samples at all angles remains a challenge.
  • A new robotic technique is introduced to achieve 360° mapping and 3D reconstruction of sample properties, using a high-precision rotating stage for better accuracy.
  • The effectiveness of this method is validated through mapping a human hair, showcasing its ability to deliver comprehensive results on topography and other nanomechanical properties.

Article Abstract

Atomic Force Microscopy (AFM) has been intensively used for imaging, characterization and manipulation at the micro- and nanoscale. Taking into account that the material is usually anisotropic, it needs to be characterized in various regions and orientations. Although recent advances of AFM techniques have allowed for large area scan of the sample on a two-dimensional plane, mapping a three-dimensional (3D) sample at a full orientation of 360° remains challenge. This paper reports a multiparametric imaging atomic force microscope via robot technique for 360° mapping and 3D reconstruction of the sample's topography and nanomechanical properties. The system is developed by integrating a three degrees of freedom (DoFs) high-precision rotation stage and a home positioning approach is proposed to compensate for the eccentric distance between the cross-section center of the sample and the ration center of the stage. With this method, the sample surface can be fully mapped by the force-distance-based AFM via rotating the sample with a complete orientation. 360° multiparametric mapping and 3D reconstruction results (e.g., topography, adhesion, modulus, energy dissipation) of a human hair demonstrate practicability and reliability of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2018.09.013DOI Listing

Publication Analysis

Top Keywords

atomic force
12
360° multiparametric
8
multiparametric imaging
8
imaging atomic
8
force microscopy
8
orientation 360°
8
mapping reconstruction
8
sample
5
360°
4
microscopy method
4

Similar Publications

It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.

View Article and Find Full Text PDF

D3-ImgNet: A Framework for Molecular Properties Prediction Based on Data-Driven Electron Density Images.

J Phys Chem A

January 2025

Liaoning Key Laboratory of Manufacturing System and Logistics Optimization, Shenyang 110819, China.

Artificial intelligence technology has introduced a new research paradigm into the fields of quantum chemistry and materials science, leading to numerous studies that utilize machine learning methods to predict molecular properties. We contend that an exemplary deep learning model should not only achieve high-precision predictions of molecular properties but also incorporate guidance from physical mechanisms. Here, we propose a framework for predicting molecular properties based on data-driven electron density images, referred to as D3-ImgNet.

View Article and Find Full Text PDF

Background: The growing number of AD patients is a public concern all over the world. During the decade, anti-amyloid beta-proteins (Aβ) monoclonal antibodies for AD patients have been developed. Among the immunotherapeutic agents, lecanemab is an anti-Aβ monoclonal antibody that binds to Aβ protofibrils (Aβ PFs), which is an intermediate molecule in Aβ species.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.

Background: The role of oligomeric forms of various proteins as direct responsible of neuronal dysfunction in neurodegenerative disorders has been supported by numerous findings at experimental level and, more recently, by histological examinations in human material. The cellular prion protein (PrP) has been proposed to mediate the neurotoxicity of β-amyloid, α-synuclein and tau oligomers. We demonstrated that although amyloid-β oligomers (AβOs) bind with high affinity to PrP, the memory deficit induced by intracerebroventricular (ICV) administration of AβOs in mice was not mediated by PrP.

View Article and Find Full Text PDF

Objective:  Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!