A new quantitative RT-PCR assay was developed to differentiate Rift Valley fever (RVF) Smithburn vaccine strain from Clone 13 vaccine strain. The new qRT-PCR assay targeting the S segment (NSs and N gene) was tested on synthesized standard RNA and MP-12 strain viruses. The detection limit of the new qRT-PCR assay is 1 copy/μL of NSs and N, and is able to differentiate the Smithburn vaccine strain of RVF from the Clone 13 vaccine strain. No cross-reactivity with other vector-borne viruses was observed, a factor that is especially important in the Republic of Korea (ROK). To examine the performance of the qRT-PCR, intra- and inter-assay variability data were analyzed and showed high reproducibility. These results indicate that the new qRT-PCR can be used as a safe and cost-effective test. Furthermore, this result suggests the possibility of differentiation between infected and vaccinated animals diagnostic test in RVF-free countries including ROK.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vbz.2018.2342DOI Listing

Publication Analysis

Top Keywords

vaccine strain
24
smithburn vaccine
12
clone vaccine
12
quantitative rt-pcr
8
rt-pcr assay
8
differentiate rift
8
rift valley
8
valley fever
8
strain clone
8
qrt-pcr assay
8

Similar Publications

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Construction of a Vero cell line expression human KREMEN1 for the development of CVA6 vaccines.

Virol J

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

Coxsackievirus A6 (CVA6) has emerged as a major pathogen causing hand, foot and mouth disease (HFMD) outbreaks worldwide. The CVA6 epidemic poses a new challenge in HFMD control since there is currently no vaccine available against CVA6 infections. The Vero cell line has been widely used in vaccine production, particularly in the preparation of viral vaccines, including poliovirus vaccines and EV71 vaccines.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome.

View Article and Find Full Text PDF

Neutralizing antibody immune correlates in COVAIL trial recipients of an mRNA second COVID-19 vaccine boost.

Nat Commun

January 2025

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Neutralizing antibody titer has been a surrogate endpoint for guiding COVID-19 vaccine approval and use, although the pandemic's evolution and the introduction of variant-adapted vaccine boosters raise questions as to this surrogate's contemporary performance. For 985 recipients of an mRNA second bivalent or monovalent booster containing various Spike inserts [Prototype (Ancestral), Beta, Delta, and/or Omicron BA.1 or BA.

View Article and Find Full Text PDF

Objective: Our study aimed to investigate antibody responses in omicron BF.7-infected patients after being vaccinated with inactivated SARS-CoV-2.

Methods: Blood serum samples were collected every 2-7 d, 1 w before infection, during the acute infection period and recovery period, and every month after recovery to detect IgG, IgM, IgA, neutralizing antibodies, and neutralizing antibodies against different omicrons in the acute phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!