Preventing ice formation during cryopreservation by vitrification has led to the successful storage and banking of numerous cellular- and tissue-based biomaterials. In their breakthrough work, Peter Mazur's group achieved over 90% survival by using a laser warming technique for 100 μm mice oocytes that were cooled in 0.1 μL droplets with 2.3 M CPA and extracellularly loaded India ink (laser absorber). Laser warming can provide rapid and uniform warming rates to "outrun" damaging ice crystal growth. Here we generalize Mazur's technique for microliter-sized droplets using laser nanowarming to rewarm millimeter-scale biomaterials when loaded extracellularly and/or intracellularly with biocompatible 1064 nm resonant gold nanoparticles. First, we show that droplets containing low-concentration cryoprotectants (such as 2 M propylene glycol ± 1 M trehalose) can be rapidly cooled at rates up to 90 000 °C/min by plunging into liquid nitrogen to achieve either a visually transparent state (i.e., vitrified) or a cloudy with ice (i.e., nonvitrified) state. Both modeling and experiments were then used to characterize the laser nanowarming process for different laser energy (2-6 J), pulse length (1-20 ms), droplet volume (0.2-1.8 μL), cryoprotectant (2-3 M), and gold concentration (0.77 × 10-4.8 × 10 nps/m) values to assess physical and biological success. Physical success was achieved by finding conditions that minimize cloudiness and white spots within the droplets during cooling and warming as signs of damaging ice formation and ice crystallization, respectively. Biological success was achieved using human dermal fibroblasts to find conditions that achieve ≥90% cell viability normalized to controls postwarming. Thus, physical and biological success can be achieved using this platform cryopreservation approach of rapid cooling and laser gold nanowarming in millimeter-scale systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536355 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.8b03011 | DOI Listing |
RSC Chem Biol
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin - Madison Madison Wisconsin 53706 USA
Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
January 2024
Department of Paediatrics I, Neonatology, Paediatric Intensive Care, Paediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
Background And Aims: Close autonomic emotional connections with others help infants reach and maintain homoeostasis. In recent years, infant regulatory problems (RPs, i.e.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States.
Despite the enthusiasm for targeted cancer therapies in preclinical studies and the success of a select few drugs, many promising drug candidates fail in clinical trials. The gap between preclinical promise and clinical outcomes underscores the need to investigate factors influencing the success or failure of targeted therapies. Dasatinib, an inhibitor of Abl and Src protein tyrosine kinases, is highly effective toward chronic myeloid leukemia (CML) by targeting BCR-Abl, but it is ineffective against solid tumors when targeting Src kinases.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Anthropology, Stony Brook University, Stony Brook, NY, USA.
Across mammals, fertility and offspring survival are often lowest at the beginning and end of females' reproductive careers. However, extrinsic drivers of reproductive success-including infanticide by males-could stochastically obscure these expected age-related trends. Here, we modelled reproductive ageing trajectories in two cercopithecine primates that experience high rates of male infanticide: the chacma baboon () and the gelada ().
View Article and Find Full Text PDFJ Clin Orthop Trauma
February 2025
Orthopedic Surgery, Brigham & Women's Hospital, Harvard University, Boston, MA, USA.
•The success of cementless fixation in TJA depends on a multitude of factors including biological, mechanical, implant, surgical, and material properties.•Biologic fixation has become the primary mode of fixation for the majority of primary total hip arthroplasty (THA) surgeries done today in the United States (US) due to its low complication rate and superior longevity compared to cemented fixation.•Cementless fixation has yet to gain wider acceptance in total knee arthroplasty (TKA) and hip hemiarthroplasty due to several factors including host bone quality, implant design, and surgical technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!