Xylem and phloem are the two main conveyance systems in plants allowing exchanges of water and carbohydrates between roots and leaves. While each system has been studied in isolation for well over a century, the coupling and coordination between them remains the subject of inquiry and active research and frames the scope of the review here. Using a set of balance equations, hazards of bubble formation and their role in shaping xylem pressure and its corollary impact on phloem pressure and sugar transport are featured. The behavior of an isolated and freely floating air bubble within the xylem is first analyzed so as to introduce key principles such as the Helmholtz free energy and its links to embryonic bubble sizes. These principles are extended by considering bubbles filled with water vapor and air arising from air seeding. Using this framework, key results about stability and hazards of bubbles in contact with xylem walls are discussed. A chemical equilibrium between phloem and xylem systems is then introduced to link xylem and osmotic pressures. The consequences of such a link for sugar concentration needed to sustain efficient phloem transport by osmosis in the loading zone is presented. Catastrophic cases where phloem dysfunction occurs are analyzed in terms of xylem function and its vulnerability to cavitation. A link between operating pressures in the soil system bounded by field capacity and wilting points and maintenance of phloem functioning are discussed as conjectures to be tested in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpy097 | DOI Listing |
Plant Cell Environ
January 2025
CREAF, Cerdanyola del Vallès, Barcelona (Catalonia), Spain.
Water storage capacity and capacitance in trees regulate hydration levels, providing water reserves during drought. However, the effects of varying traits, tissue fractions and of different water pools on the allometry of branch-/sample-level properties have not been systematically investigated. We analyse the relationships between branch size and branch capacity and capacitance with respect to wood density, xylem vulnerability to embolism, and tissue fractions.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université G. Eiffel, ISTerre, Grenoble, France. Electronic address:
Understanding cadmium (Cd) pathways in cacao trees is critical for developing Cd mitigation strategies. This study investigates whether Cd uptake and translocation mechanisms differ between a low and a high Cd-accumulating cacao cultivar. We sampled three replicate trees of each cultivar, and a grafted cultivar that shared the same scion as the low Cd accumulator but had a different rootstock.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.
Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.
View Article and Find Full Text PDFMolecules
January 2025
The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
In recent years, some new "Qi-Nan" clones of with the characteristics of easy induction and high-quality agarwood have been obtained, through the cultivation and propagation of grafted seedlings. These clones are used for the intensive production of high-quality agarwood. The speed of resin formation and yield are crucial for the development of the agarwood industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!