Statin Treatment Decreases Mitochondrial Respiration But Muscle Coenzyme Q10 Levels Are Unaltered: The LIFESTAT Study.

J Clin Endocrinol Metab

Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

Published: July 2019

Background: Myalgia is a common adverse effect of statin therapy, but the underlying mechanism is unknown. Statins may reduce levels of coenzyme Q10 (CoQ10), which is an essential electron carrier in the mitochondrial electron transport system, thereby impairing mitochondrial respiratory function, potentially leading to myalgia.

Objectives: To investigate whether statin-induced myalgia is coupled to reduced intramuscular CoQ10 concentration and impaired mitochondrial respiratory function.

Methods: Patients receiving simvastatin (i.e., statin) therapy (n = 64) were recruited, of whom 25 experienced myalgia (myalgic group) and 39 had no symptoms of myalgia (NS group). Another 20 had untreated high blood cholesterol levels (control group). Blood and muscle samples were obtained. Intramuscular CoQ10 concentration was measured, and mitochondrial respiratory function and reactive oxygen species (ROS) production were measured. Citrate synthase (CS) activity was used as a biomarker of mitochondrial content in skeletal muscle.

Results: Intramuscular CoQ10 concentration was comparable among groups. Mitochondrial complex II-linked respiration was reduced in the statin-myalgic and -NS groups compared with the control group. When mitochondrial respiration was normalized to CS activity, respiration rate was higher in the myalgic group compared with the NS and control groups. Maximal ROS production was similar among groups.

Conclusion: Statin therapy appeared to impair mitochondrial complex-II-linked respiration, but the mitochondrial capacity for complex I+II-linked respiration remained intact. Myalgia was not coupled to reduced intramuscular CoQ10 levels. Intrinsic mitochondrial respiratory capacity was increased with statin-induced myalgia but not accompanied by increased ROS production.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2018-01185DOI Listing

Publication Analysis

Top Keywords

mitochondrial respiratory
16
intramuscular coq10
16
statin therapy
12
coq10 concentration
12
ros production
12
mitochondrial
11
mitochondrial respiration
8
coenzyme q10
8
respiratory function
8
statin-induced myalgia
8

Similar Publications

Background: Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear.

View Article and Find Full Text PDF

Nuclear respiratory factor-1 (NRF1) induction drives mitochondrial biogenesis and attenuates amyloid beta-induced mitochondrial dysfunction and neurotoxicity.

Neurotherapeutics

December 2024

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:

Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.

View Article and Find Full Text PDF

Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.

View Article and Find Full Text PDF

Background: Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been a global pandemic affecting millions of people's lives, which has led to 'post-COVID-19 fatigue'. Alarmingly, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) not only infects the lungs but also influences the heart and brain. Endothelial cell dysfunction and hypercoagulation, which we know occur with this infection, lead to thrombo-inflammation that can manifest as many myriad cardio-cerebrovascular disorders, such as brain fog, fatigue, cognitive dysfunction, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!