Background: Previously, we have been able to demonstrate the possibility of coating the inner surface of the renal arteries in porcine kidneys with a heparin conjugate during hypothermic machine perfusion (HMP). The purpose of this study was to assess the efficacy of this treatment in reducing early ischemia-reperfusion injury.
Method: Brain death was induced in male landrace pigs by stepwise volume expansion of an epidural balloon catheter until negative cerebral perfusion pressure (CPP) was obtained. Both kidneys (matched pairs; n = 6 + 6) were preserved for 20 hours by HMP during which 50 mg heparin conjugate was added to one of the HMP systems (treated group). A customized ex vivo normothermic oxygenated perfusion (NP) system with added exogenous creatinine was used to evaluate early kidney function. Blood, urine and histological samples were collected during the subsequent 3 hours of NP.
Results: Kidney weight was lower at the end of NP (P = 0.017) in the treated group compared with control kidneys. The rate of decline in creatinine level was faster (P = 0.024), total urinary volume was higher (P = 0.031), and the level of urine neutrophil gelatinase-associated lipocalin (NGAL) was lower (P = 0.031) in the treated group. Histologically, less tubular changes were seen (P = 0.046). During NP intrarenal resistance remained lower (P < 0.0001) in the treated group.
Conclusions: Perfusion of porcine kidneys with heparin conjugate during HMP reduces preservation injury and improves organ function shortly after reperfusion. No increased risk of bleeding was seen in this setup. This protective strategy may potentially improve the quality of transplanted kidneys in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TP.0000000000002469 | DOI Listing |
Sci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy.
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFVet Microbiol
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!