MiR-216a inhibits proliferation and promotes apoptosis of human airway smooth muscle cells by targeting JAK2.

J Asthma

a Department of Allergy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai , P.R. China.

Published: September 2019

AI Article Synopsis

Article Abstract

: Accumulating evidence suggests that aberrantly expressed microRNAs in airway smooth muscle (ASM) cells could change airway remodeling during the development of asthma. However, the underlying functions of microRNAs in ASM cell proliferation and apoptosis need to be further elucidated. : By using RT-qPCR, miR-216a expression level was examined in the asthmatic patients and non-asthmatic individuals. Cell proliferation assay and flow cytometry analysis were used in ASM cells in which miR-216a was an abnormal expression. MiR-216a predicted to target gene was explored by bioinformatic software, and further analyzed by Western blotting and luciferase reporter assay. : Our results demonstrated that miR-216a levels were considerably lower in the ASM cells of asthmatic patients than in those of non-asthmatic individuals. Further study verified that the overexpression of miR-216a markedly suppressed cell proliferation and promoted cell apoptosis, whereas the knockdown of miR-216a had opposite effects in ASM cells. In addition, luciferase reporter assays and Western blotting identified that was the direct functional target of miR-216a, and the ectopic expression of partially rescued the inhibitory effect of miR-216a in ASM cells. : The above data indicate that miR-216a may function as a key regulator of airway remodeling by targeting , thus suggesting the potential role of miR-216a in the pathogenesis of asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02770903.2018.1509991DOI Listing

Publication Analysis

Top Keywords

asm cells
20
cell proliferation
12
mir-216a
11
airway smooth
8
smooth muscle
8
airway remodeling
8
asthmatic patients
8
patients non-asthmatic
8
non-asthmatic individuals
8
western blotting
8

Similar Publications

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.

View Article and Find Full Text PDF

Oxylipin Profiling of Airway Structural Cells Is Unique and Modified by Relevant Stimuli.

J Proteome Res

January 2025

Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.

Article Synopsis
  • Oxylipins, which are lipid mediators derived from fatty acids, play crucial roles in respiratory health, but their profiles in lung structural cells are not fully understood.
  • The study measured 162 oxylipins in airway smooth muscle, lung fibroblasts, and epithelial cells, both at baseline and after exposure to various stimuli.
  • Results showed that airway smooth muscle and lung fibroblasts had similar oxylipin profiles dominated by CYP450 metabolites, while epithelial cells had a unique profile rich in COX-derived oxylipins, with distinct changes noted upon stimulation that could impact respiratory function.
View Article and Find Full Text PDF

The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).

View Article and Find Full Text PDF

Background: End-stage renal disease is a growing global health issue, disproportionately impacting low- and middle-income countries. While kidney transplantation remains the best treatment for end-stage renal disease, access to this treatment modality is limited by chronic donor organ shortages. To address this critical need, we are developing transplantable bioengineered kidney grafts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!