Objectives: Crohn's disease (CD) is a multifactorial disease, characterized by oxidant-induced tissue injury with a possible activation of poly(ADP-ribose) polymerase (PARP)-1. MicroRNAs (miRs) can offer a potential link between the genetic susceptibility, environmental and immunologic factors in the pathogenesis of CD. Previously, PARP-1 was identified as a direct target gene of miR-223 in an epithelial cell line. Our aim was to examine PARP activation and miR-223 expression in colonic biopsies of pediatric CD. To support our in vivo findings, the effect of lipopolysaccharide (LPS) on same parameters was examined in HT-29 colonic epithelial cell line.
Methods: Colonic biopsies were taken from patients with macroscopically inflamed and intact mucosa with CD and controls. LPS treated HT-29 cells served as our in vitro model. To analyze the PARP-1 expression real-time PCR, Western blot and immunohistochemical analyses were used. PARP-1 enzymatic activity was assessed on the basis of poly(ADP-ribosyl)ated proteins. Expression of miR-223 was examined by real-time PCR.
Results: PARP-1 mRNA and miR-223 expression was significantly elevated, however, the amount of PARP-1 protein and poly(ADP-ribose) was reduced in pediatric CD compared to controls. LPS incubation did not affect the expression of PARP-1 mRNA, however, decreased miR-223 expression, and enhanced PARP-1 activity.
Conclusions: In our study, we showed that the expression of miR-223 is up-regulated and poly(ADP-ribosyl)ation is reduced in pediatric patients with CD. Moreover, we confirmed their opposite change in LPS treated epithelial cells, too. These data suggest that the hypofunctionality of PARP-1 may play a potential role in the pathomechanism of CD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00365521.2018.1498915 | DOI Listing |
Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Int J Mol Sci
December 2024
Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland.
High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) is a rare germi-nal centre lymphoma characterised by a typical gain/loss pattern on chromo-some 11q but without MYC translocation. It shares some features with Burkitt lymphoma (BL), HGBCLs and germinal centre-derived diffuse large B-cell lym-phoma, not otherwise specified (GCB-DLBCL-NOS). Since microRNA expression in HGBCL-11q remains unknown, we aimed to identify and compare the mi-croRNA expression profiles in HGBCL-11q, BL and in GCB-DLBCL-NOS.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFBiomedicines
November 2024
Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
Background: Dengue virus (DENV) is the most widespread mosquito-borne virus, which can cause dengue fever with mild symptoms, or progress to fatal dengue hemorrhagic fever and dengue shock syndrome. As the main target cells of DENV, macrophages are responsible for the innate immune response against the virus.
Methods: In this study, we investigated the role of pyroptosis in the pathogenic mechanism of dengue fever by examining the level of pyroptosis in DENV-1-infected macrophages and further screened differentially expressed microRNAs by high-throughput sequencing to predict microRNAs that could affect the pyroptosis of the macrophage.
J Inflamm (Lond)
January 2025
Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!