Objective: The clinical diagnosis of primary lateral sclerosis can only be made after upper motor neuron symptoms have progressed for several years without developing lower motor neuron signs. The goal of the study was to identify neuroimaging changes that occur early in primary lateral sclerosis, prior to clinical diagnosis.
Methods: MRI scans were obtained on 13 patients with adult-onset progressive spasticity for five years or less who were followed longitudinally to confirm a clinical diagnosis of primary lateral sclerosis. Resting state functional MRI, diffusion tensor imaging, and anatomical images were obtained. These "pre-PLS" patients were compared to 18 patients with longstanding, established primary lateral sclerosis and 28 controls.
Results: Pre-PLS patients had a marked reduction in seed-based resting-state motor network connectivity compared to the controls and patients with longstanding disease. White matter regions with reduced fractional anisotropy were similar in the two patient groups compared to the controls. Patients with longstanding disease had cortical thinning of the precentral gyrus. A slight thinning of the right precentral gyrus was detected in initial pre-PLS patients' scans. Follow-up scans in eight pre-PLS patients 1-2 years later showed increasing motor connectivity, thinning of the precentral gyrus, and no change in diffusion measures of the corticospinal tract or callosal motor region.
Conclusions: Loss of motor functional connectivity is an early imaging marker in primary lateral sclerosis. This differs from literature descriptions of amyotrophic lateral sclerosis, warranting further studies to test whether resting-state functional MRI can differentiate between amyotrophic lateral sclerosis and primary lateral sclerosis at early disease stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456429 | PMC |
http://dx.doi.org/10.1080/21678421.2018.1517180 | DOI Listing |
Life Sci Alliance
April 2025
Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.
View Article and Find Full Text PDFMethods Enzymol
January 2025
St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia. Electronic address:
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFFront Neurosci
January 2025
Neurology Associate P.C., Lincoln, NE, United States.
Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!