A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of Ge:Ga Hyperdoped Materials and Devices Using CMOS-Compatible Ga and Ge Hydride Chemistries. | LitMetric

We report a versatile chemical vapor deposition (CVD) method to dope Ge films with Ga atoms in situ over a wide concentration range spanning from 3 × 10 to 2.7 × 10 cm. The method introduces a stable and volatile Ga hydride [DGaN(CH)] that reacts readily with GeH to deliver Ga dopants controllably and systematically at complementary metal-oxide-semiconductor compatible ultralow temperatures of ∼360 °C. Thick and monocrystalline layers (1.3 μm) are produced on Si substrates at growth rates approaching 50 nm/min. The doped crystals are fully epitaxial and devoid of misfit defects and Ga precipitates as evidenced by Rutherford backscattering spectrometry, X-ray diffraction, and cross-sectional transmission electron microscopy. The Ga contents measured by secondary ion mass spectrometry and the active carrier concentrations determined by spectroscopic ellipsometry (as well as Hall effect measurements in several cases) are in close agreement, indicating near full activation. Photoluminescence spectra show a strong emission peak at 0.79 eV corresponding to the direct gap E transition, evidence of the indirect transition, and additional structures characteristic of p-type Ge. Electroluminescence and I- V curves measured from p(Ga)-i-n photodiodes are found to be at par with those from boron-based reference devices. These results are promising and demonstrate that a single-source CVD approach allows independent control of Ga doping level and junction depth, producing flat dopant profiles, high activation ratios, uniform distributions, and sharp interfaces. This method potentially represents a viable alternative to state-of-the-art boron-based p-type doping and activation of Ge-like materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10046DOI Listing

Publication Analysis

Top Keywords

fabrication gega
4
gega hyperdoped
4
hyperdoped materials
4
materials devices
4
devices cmos-compatible
4
cmos-compatible hydride
4
hydride chemistries
4
chemistries report
4
report versatile
4
versatile chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!