Detecting Counterfeit Brandies.

Chemistry

Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.

Published: November 2018

A hypothesis-free sensor array (optoelectronic tongue) composed of an anionic, a cationic and two neutral poly(para-aryleneethynylene)s (PAE) at pH 3, 7 and 13 discriminate more than 30 spirits (including brandy, Branntwein, Cognac, Spirituose, and Weinbrand). Counterfeits (made by mixing of low-quality spirits and caramel colour) and different batches of identical brands of brandies are discriminated. The sensor array works without sample preparation or great instrumental cost, and is superior to conventional methods with respect to sample need (10-20 μL), time and effort. The discrimination stems from differential fluorescence quenching of the PAE-array by the complex mixture of the beverages' colourants, from the oak barrels or added caramel colour. The collected quenching data were analysed by linear discriminant analysis (LDA) and principal component analysis (PCA) to achieve successful discrimination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201804607DOI Listing

Publication Analysis

Top Keywords

sensor array
8
caramel colour
8
detecting counterfeit
4
counterfeit brandies
4
brandies hypothesis-free
4
hypothesis-free sensor
4
array optoelectronic
4
optoelectronic tongue
4
tongue composed
4
composed anionic
4

Similar Publications

An integrated and multifunctional homemade cell sensor platform based on Si-d-CQDs and CRISPR-Cas12a for CD31 detection during endothelial-to-mesenchymal transition.

Talanta

January 2025

Department of Laboratory Medicine, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell research, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Clinical molecular diagnostic center, Taihe hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China. Electronic address:

Endothelial-to-mesenchymal transition (EndMT) plays a crucial role in the initiation and progression of atherosclerosis and various disease processes. Cluster of differentiation 31 (CD31) is a significant marker in EndMT. Detecting CD31 is essential for early-stage monitoring of EndMT and diagnosing atherosclerosis.

View Article and Find Full Text PDF

Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO nanoparticles on the MXene.

View Article and Find Full Text PDF

This paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.

View Article and Find Full Text PDF

Sapphire fiber Bragg gratings (SFBGs) are promising high-temperature sensors in many harsh environments, such as aviation, nuclear power, and furnaces. Here, we proposed and experimentally demonstrated a quasi-distributed high-temperature sensor based on an SFBG array sealed in an argon gas-infiltrated sapphire tube interrogated by using an InGaAs-based interrogator. An SFBG array including five SFBGs was inscribed using the femtosecond laser line-by-line method and sealed in an argon gas-infiltrated sapphire tube.

View Article and Find Full Text PDF

Time-of-flight Lidars based on single-photon avalanche diode (SPAD) detector arrays are emerging as a strong candidate technology for long range three-dimensional imaging in challenging environmental conditions. However, reaching this bound requires the existence of an unbiased estimator, which does not necessarily exist for data acquired by realistic SPAD-based Lidar systems. Here, we extend our existing SPAD Lidar modelling framework to include a novel metric, which we term the 'Binomial Separation Criterion', as a means of quantifying whether a depth estimation algorithm will reach the Cramér-Rao bound (CRB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!