After exposure to microgravity, or head-down bed rest (HDBR), fluid loading is often used with the intent of increasing plasma volume and maintaining mean arterial pressure during orthostatic stress. Nine men (aged 18-32 years) underwent three randomized trials with lower body negative pressure (LBNP) before and after: (1) 4-h of sitting with fluid loading (1 g sodium chloride/125 mL of water starting 2.5-h before LBNP), (2) 28-h of 6-degree HDBR without fluid loading, and (3) 28-h of 6-degree HDBR with fluid loading. LBNP was progressive from 0 to -40 mmHg. After 28-h HDBR, fluid loading did not protect against the loss of plasma volume (-280 ± 64 mL without fluid loading, -207 ± 86 with fluid loading, P = 0.472) nor did it protect against a drop of mean arterial pressure (P = 0.017) during LBNP (Post-28 h HDBR response from 0 to -40 mmHg LBNP: 88 ± 4 to 85 ± 4 mmHg without fluid loading and 93 ± 4 to 88 ± 5 mmHg with fluid loading, P = 0.557 between trials). However, fluid loading did protect against the loss of stroke volume index and central venous pressure observed after 28-h HDBR. Fluid loading also attenuated the increase of angiotensin II seen after 28-h HDBR and throughout the LBNP protocol (Post-28 h HDBR response from 0 to -40 mmHg LBNP: 16.6 ± 3.4 to 23.7 ± 5.0 pg/mL without fluid loading and 6.1 ± 0.8 to 12.2 ± 2.3 pg/mL with fluid loading, P < 0.001 between trials). Our results indicate that fluid loading did not protect against plasma volume loss due to HDBR or change blood pressure responses to LBNP. However, changes in central venous pressure, stroke volume and fluid regulatory hormones could potentially influence longer duration studies and those with more severe orthostatic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175712PMC
http://dx.doi.org/10.14814/phy2.13874DOI Listing

Publication Analysis

Top Keywords

fluid loading
56
hdbr fluid
20
loading
14
fluid
13
28-h hdbr
12
head-down bed
8
bed rest
8
hdbr
8
plasma volume
8
arterial pressure
8

Similar Publications

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Impact of Norepinephrine Use on Free Flap Survival in Breast Reconstructive Microsurgery.

Microsurgery

January 2025

Service de Chirurgie Plastique et Reconstructrice, Hôpital européen Georges-Pompidou, Paris, France.

Objective: The optimal method for maintaining intraoperative blood pressure during microsurgical procedures remains controversial. While intravenous fluid administration is essential, overfilling can lead to complications. Vasopressor agents are used cautiously due to their vasoconstrictive effects, which could potentially lead to flap failure.

View Article and Find Full Text PDF

Pequi Pulp () Oil-Loaded Emulsions as Cosmetic Products for Topical Use.

Polymers (Basel)

January 2025

Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.

The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.

View Article and Find Full Text PDF

Comparative Analysis of Chemical Composition and Antibacterial Activity of Essential Oils from Five Varieties of Extracted via Supercritical Fluid Extraction.

Molecules

January 2025

Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.

This study aimed to determine the chemical composition of five essential oils (LEOs) using the gas chromatography-mass spectroscopy technique and to assess their antibacterial activity against four marine species, including , , , and . Sensitivity tests were performed using the disk diffusion and serial dilution methods. The results showed that all five LEOs exhibited antibacterial activity against the four tested marine species.

View Article and Find Full Text PDF

Background: The use of a fluid co-load has been shown to enhance hemodynamic stability and diminish the occurrence of hypotension after spinal anesthesia when paired with prophylactic norepinephrine. This research aimed to identify the effective dosages (ED and ED) of prophylactic norepinephrine boluses, in conjunction with a crystalloid co-load, for the prevention of hypotension after spinal anesthesia in cesarean delivery patients.

Methods: Patients were administered crystalloid co-loads at a dosage of 10 mL/kg, in addition to preventive norepinephrine dosages direct following spinal anesthesia administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!