QCM detection of molecule-nanoparticle interactions for ligand shells of varying morphology.

Nanoscale

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.

Published: October 2018

Nanoparticles (NP) have widespread applications from sensing to drug delivery where much behavior is determined by the nature of the surface and the resulting intermolecular interactions with the local environment. Ligand mixtures enable continuously tunable behavior where both the composition and morphology influence molecular interactions. Mixed ligand shells form multiple morphologies ranging from Janus to patchy and stripe-like with varying domain dimensions. Solvent-NP interactions are generally measured by solubility measures alone. Here we develop a quartz crystal microbalance (QCM) approach to more broadly quantify molecule-NP interactions via vapor phase uptake into solid NP-films independent from solvation constraints. The composition and morphology of mixed ligand shells were found to exhibit pronounced non-monotonic behavior that deviated from continuum thermodynamics, highlighting the influence of ligand morphology upon absorption/adsorption. Alkyl and perfluorinated thiols were used as a model case with constant core-size distribution. The ligand morphology was determined by 19F NMR. Molecule uptake into NPs was measured with five benzene derivatives with varied degree of fluorination. For the cases examined, QCM measurements revealed enhanced uptake for patchy morphologies and suppressed uptake for stripe-like morphologies. These results contrast with insights from solubility measures alone where QCM sometimes identified significant molecular uptake of poor solvents. This QCM method thus provides new insights to molecule-NP interactions independent of the solvation shell.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr05605fDOI Listing

Publication Analysis

Top Keywords

ligand shells
12
composition morphology
8
mixed ligand
8
solubility measures
8
molecule-np interactions
8
independent solvation
8
ligand morphology
8
interactions
6
ligand
6
qcm
5

Similar Publications

Open metal sites are crucial in catalysis. We have used a "loose coordination strategy" (LCS) to preorganize open metal sites in gold cluster catalysts. A gold nanocluster with composition of [Au26(3,4-Me2-Ph-form)9(iPr2-imy)3(Me2S)](BF4)2(iPr2-imy = 1,3-Diisopropylimidazolium tetrafluoroborate, 3,4-Me2-Ph-form = N,N'-Di(3,4-dimethyl-phenyl)formamidine) (Au26) has been obtained by one pot synthesis, i.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.

View Article and Find Full Text PDF

Supercooled Liquids in a Core-Shell Coordination Structure for Practical Long-Term Energy Storage.

Adv Mater

January 2025

Department of Materials Science and Engineering, Institute of Innovative Materials (I2, M), Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Rd., Shenzhen, Guangdong, 518055, China.

Mutual acquisition of phase-stability and controllable phase-transition becomes a predominant criterion of phase-change materials for the practical long-term energy storage but seems contradictory always. Here a strategy combining coordination and hydrogen bonds hierarchically to create a supercooled liquid in a core-shell coordination structure is reported, addressing that demand successfully. This new material is composed of a Mn-methylurea complex (MM) core and the hierarchically bonded erythritols shell.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!