Nucleic acids are constantly exposed to external agents that can induce chemical and photochemical damage. In spite of the great advances achieved in the last years, some molecular mechanisms of DNA damage are not completely understood yet. A recent experimental report (I. Aparici-Espert et al., ACS Chem. Biol. 2018, 13, 542) proved the ability of 5-formyluracil (ForU), a common oxidatively generated product of thymine, to act as an intrinsic sensitizer of nucleic acids, causing single strand breaks and cyclobutane pyrimidine dimers in plasmid DNA. In the present contribution, we use theoretical methodologies to study the triplet photosensitization mechanism of thymine exerted by ForU in a model dimer and in DNA environment. The photochemical pathways in the former system are described combining the CASPT2 and TD-DFT methods, whereas molecular dynamics simulations and QM/MM calculations are employed for the DNA duplex. It is unambiguously shown that the 1n,π* state localised in ForU mediates the population of the triplet manifold, most likely the 3π,π* state centred in ForU, whereas the 3π,π* state localized in thymine can be populated via triplet-triplet energy transfer given the small energy barrier of <0.23 eV determined for this pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp04866e | DOI Listing |
Adv Healthc Mater
January 2025
The Second Hospital of Dalian Medical University, Dalian, 116023, China.
The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Instituto de Ciencia Molecular, Universitat de València, 22085 València, Spain.
Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via "alchemical" intermediates with mixed singlet-triplet nature.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama.
Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Materials Science and Engineering, 1088 Xueyuan Blvd., Nanshan District, 518055, Shenzhen, CHINA.
Open-shell radical materials, which are characterized by unpaired electrons, have led to revolutionary breakthroughs in material science due to their unique optoelectronic properties. However, the involvement of organic radicals in photodynamic therapy (PDT) has rarely been reported or discussed. This work studies two photosensitizer analogs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!