Catheter ablation is a curative therapeutic approach for atrial fibrillation (AF). Ablation of rotational sources based on basket catheter measurements has been proposed as a promising approach in patients with persistent AF to complement pulmonary vein isolation. However, clinically reported success rates are equivocal calling for a mechanistic investigation under controlled conditions. We present a computational framework to benchmark ablation strategies considering the whole cycle from excitation propagation to electrogram acquisition and processing to virtual therapy. Fibrillation was induced in a patient-specific 3D volumetric model of the left atrium, which was homogeneously remodeled to sustain reentry. The resulting extracellular potential field was sampled using models of grid catheters as well as realistically deformed basket catheters considering the specific atrial anatomy. The virtual electrograms were processed to compute phase singularity density maps to target rotor tips with up to three circular ablations. Stable rotors were successfully induced in different regions of the homogeneously remodeled atrium showing that rotors are not constrained to unique anatomical structures or locations. Density maps of rotor tip trajectories correctly identified and located the rotors (deviation < 10 mm) based on catheter recordings only for sufficient resolution (inter-electrode distance ≤3 mm) and proximity to the wall (≤10 mm). Targeting rotor sites with ablation did not stop reentries in the homogeneously remodeled atria independent from lesion size (1-7 mm radius), from linearly connecting lesions with anatomical obstacles, and from the number of rotors targeted sequentially (≤3). Our results show that phase maps derived from intracardiac electrograms can be a powerful tool to map atrial activation patterns, yet they can also be misleading due to inaccurate localization of the rotor tip depending on electrode resolution and distance to the wall. This should be considered to avoid ablating regions that are in fact free of rotor sources of AF. In our experience, ablation of rotor sites was not successful to stop fibrillation. Our comprehensive simulation framework provides the means to holistically benchmark ablation strategies under consideration of all steps involved in electrogram-based therapy and, in future, could be used to study more heterogeneously remodeled disease states as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161611PMC
http://dx.doi.org/10.3389/fphys.2018.01251DOI Listing

Publication Analysis

Top Keywords

homogeneously remodeled
12
computational framework
8
framework benchmark
8
basket catheter
8
atrial fibrillation
8
benchmark ablation
8
ablation strategies
8
density maps
8
rotor sites
8
ablation
7

Similar Publications

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Objective: This longitudinal clinical study monitored annually the maxillary and mandibular bone remodeling and masticatory function in complete denture (CD) wearers rehabilitated with implant-retained mandibular overdentures (MO) over three years and combined radiographic and masticatory function data to assess the correlation between bone remodeling and masticatory function.

Design: Thirty-nine MO wearers were monitored annually to assess changes in: i) residual ridge in the anterior and posterior maxillary region; ii) posterior height and posterior area index (PAI) in the mandible; and iii) masticatory function. Bone remodeling was measured through linear and angular measurements using panoramic radiographs.

View Article and Find Full Text PDF

Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.

ACS Biomater Sci Eng

January 2025

Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.

Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.

View Article and Find Full Text PDF
Article Synopsis
  • Predicting the growth of ascending aortic aneurysms (AscAA) is complex due to factors like aortic shape, tissue behavior, and blood flow.
  • The study uses a flow-structural growth and remodeling (FSG) model to simulate AscAA growth, starting with an initial tissue injury and using blood flow data from simulations to guide the model.
  • The findings suggest that adjusting model parameters, such as the direction of blood flow and tissue tension, significantly affects growth patterns, and this approach could be used for further patient-specific predictions in clinical settings.
View Article and Find Full Text PDF

Purpose: To systematically evaluate the clinical efficacy and safety of targeted drugs in patients with pulmonary arterial hypertension (PAH) with cardiac function grades III-IV, and conduct a meta-analysis.

Methods: Two researchers independently searched the PubMed, EMBASE, and Cochrane Library databases for relevant studies, with the search period extending from the establishment of the databases to March 2024. Meta-analysis was performed using statistical software Review Manager 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!