Gaseous flow through heterogeneous, partially connected networks of pipes.

Sci Rep

Earth, Atmospheric and Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Published: October 2018

Simulations of flow of an ideal gas through heterogeneous simple cubic pipe networks with different pipe radius distributions and variable bond coordination numbers were performed. Networks with monomodal and bimodal radius distributions were constructed. A very wide range of Knudsen numbers was achieved. Flow simulations of purely viscous gases and incompressible liquids were also carried out for comparison. The permeability to gas in the purely viscous regime was larger than the permeability to an incompressible liquid. Based on a variety of computational tests, this result was likely not a numerical artifact. The simulated macroscopic flow behavior differed from the underlying single pipe model, depending on the radius distribution, network connectivity and magnitude of the externally applied pressure gradient, and was compatible with the Klinkenberg analysis only when the maximum Knudsen number used in each simulation was lower than 1. In this condition, the Klinkenberg coefficient was nearly proportional to the inverse of the network hydraulic radius while the effect of the radius distribution was weak and that of the network connectivity essentially negligible. The bimodal simulations displayed a typical percolation behavior, with the Klinkenberg coefficient remaining constant as long as the large pipe population was connected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175833PMC
http://dx.doi.org/10.1038/s41598-018-33374-2DOI Listing

Publication Analysis

Top Keywords

radius distributions
8
purely viscous
8
radius distribution
8
network connectivity
8
klinkenberg coefficient
8
radius
5
gaseous flow
4
flow heterogeneous
4
heterogeneous partially
4
partially connected
4

Similar Publications

Heat-stable single-helical structures formed during the extrusion process play a key role in the cooking and texture qualities of rice noodles.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:

Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.

View Article and Find Full Text PDF

Predicting marine habitat for marbled murrelets during breeding and nonbreeding seasons in the Salish Sea, British Columbia, Canada.

PLoS One

January 2025

Wildlife Research Division, Institute of Ocean Sciences, Environment and Climate Change Canada, Integrated Marine Spatial Ecology Lab, Sidney, British Columbia, Canada.

The marbled murrelet (Brachyramphus marmoratus) is a small seabird inhabiting coastal regions along the Pacific coast of North America, and nests in old-growth forests usually within 80 km from shore. The Canadian population of marbled murrelets is listed as Threatened under the federal Species at Risk Act. To investigate the species' marine distribution, we conducted analyses of the occurrence of marbled murrelets at-sea between 2000 and 2022, utilizing at-sea and marine shoreline surveys in the Canadian portion of the Salish Sea.

View Article and Find Full Text PDF

Automatic Optical Path Alignment Method for Optical Biological Microscope.

Sensors (Basel)

December 2024

Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.

A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!