The incidence of inflammatory bowel disease (IBD) has markedly increased. Our research findings during the past showed that medicinal plant extracts and the derived phytochemical components from Wedelia chinensis (WC) can have strong anti-colitis activities. Here, we further identified the key component phytochemicals from active fractions of different WC preparations (WCHA) that are responsible for the protective effect of WCHA in colitis mice. Of the 3 major compounds (wedelolactone, luteolin and apigenin) in this fraction, luteolin had the highest anti-inflammatory effect in vivo. Using a next-generation sequencing (NGS) (e.g., RNA-seq) system to analyze the transcriptome of colorectal cells/tissues in mice with dextran sulfate sodium (DSS)-induced colitis with/without phytochemicals treatment, luteolin was found to strongly suppress the DSS-activated IL-17 pathway in colon tissue. In addition, co-treatment with wedelolactone and luteolin had a synergistic effect on the expression level of some IL-17 pathway-related genes. Interestingly, our NGS analyses also indicated that luteolin and wedelolactone can specifically suppress the expression of NLRP3 and NLRP1. Using a 3-dimensional cell co-culture system, we further demonstrated that luteolin could efficiently suppress NLRP3 expression via disruption of IL-17A signaling in inflamed colon tissue, which also indicates the pharmacological potential of luteolin and wedelolactone in treating IBD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175949 | PMC |
http://dx.doi.org/10.1038/s41598-018-33204-5 | DOI Listing |
ACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Parasitic helminths secrete extracellular vesicles (EVs) into their host tissues to modulate immune responses, but the underlying mechanisms are poorly understood. We demonstrate that Ascaris EVs are efficiently internalised by monocytes in human peripheral blood mononuclear cells and increase the percentage of classical monocytes. Furthermore, EV treatment of monocytes induced a novel anti-inflammatory phenotype characterised by CD14, CD16, CC chemokine receptor 2 (CCR2) and programmed death-ligand 1 (PD-L1) cells.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Collaborative Innovation Center for Clinical and Translational Science, Department of Pharmacology and Chemical Biology, & Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China.
Inflammatory bowel disease (IBD) is characterized by intestinal mucosal damage that exacerbates inflammation and promotes disease recurrence. Although hydrogel-based therapies have shown potential for mucosal repair, challenges remain due to inadequate targeting and low hydrogel density, leading to ongoing infiltration of harmful substances and delayed mucosal healing. In this study, an inflammation-targeting-triggered healing hydrogel (ITTH hydrogel) is developed, composed of polyvinyl alcohol-alginate microgels (PALMs) and a cyclodextrin polymer crosslinker (CPC).
View Article and Find Full Text PDFPhytomedicine
January 2025
General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China. Electronic address:
Background: Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed.
Purpose: The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis.
Acta Cir Bras
January 2025
Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.
Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.
Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!