Wildfires produce substantial CO emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015-2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO emissions during the 2015-2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha, mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015-2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO emissions.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178445 | PMC |
http://dx.doi.org/10.1098/rstb.2017.0312 | DOI Listing |
J Environ Manage
January 2025
CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:
Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Institut de Recherche pour le Développement, Institut National Polytechnique de Toulouse, Université Toulouse 3 - Paul Sabatier, Toulouse F-31062, France.
Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.
View Article and Find Full Text PDFEcol Evol
January 2025
Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield UK.
The role of trait evolution in shaping the functional and ecological diversity of tropical forests remains poorly understood. Analyses of trait variation as a function of evolutionary history and environmental variables should reveal the drivers of species distributions, as well as generate insights valuable to conservation. Here, we focus on the Dipterocarpaceae, the key plant family underpinning the hyperdiversity of South-East Asian tropical forest canopies and of major conservation concern due to over-exploitation for timber, cultivation, and climate change.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Federal Institute of Maranhão, Campus Barreirinhas, Rodovia MA-225, KM 04, CEP:65590-000, Barreirinhas, Maranhão, Brazil.
Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!