Topological quantum computation based on chiral Majorana fermions.

Proc Natl Acad Sci U S A

Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045;

Published: October 2018

The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205432PMC
http://dx.doi.org/10.1073/pnas.1810003115DOI Listing

Publication Analysis

Top Keywords

chiral majorana
20
majorana fermions
16
topological quantum
8
quantum computation
8
hybrid device
8
device quantum
8
majorana
7
chiral
5
topological
4
computation based
4

Similar Publications

Majorana quasiparticles and topological phases in 3D active nematics.

Proc Natl Acad Sci U S A

December 2024

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom.

Quasiparticles are low-energy excitations with important roles in condensed matter physics. An intriguing example is provided by Majorana quasiparticles, which are equivalent to their antiparticles. Despite being implicated in neutrino oscillations and topological superconductivity, their experimental realizations remain very rare.

View Article and Find Full Text PDF

Chirality-Induced Majorana Zero Modes and Majorana Polarization.

ACS Nano

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an -wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias -wave superconducting heterostructure (without any external magnetic field).

View Article and Find Full Text PDF

Visualization of Skyrmion-Superconducting Vortex Pairs in a Chiral-Magnet-Superconductor Heterostructure.

Phys Rev Lett

October 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Magnetic skyrmions, the topological states possessing chiral magnetic structure with nontrivial topology, have been widely investigated as a promising candidate for spintronic devices. They can also couple with superconducting vortices to form skyrmion-vortex pairs, hosting Majorana zero mode, which is a potential candidate for topological quantum computing. Many theoretical proposals have been put forward on constructing skyrmion-vortex pairs in heterostructures of chiral magnets and superconductors.

View Article and Find Full Text PDF

Demonstrating the non-Abelian Ising anyon statistics of Majorana zero modes in a physical platform still represents a major open challenge in physics. We here show that the linear low-frequency charge conductance of a Majorana interferometer containing a floating superconducting island can reveal the topological spin of quantum edge vortices. The latter are associated with chiral Majorana fermion edge modes and represent "flying" Ising anyons.

View Article and Find Full Text PDF
Article Synopsis
  • Thin films of ferromagnetic topological insulators can achieve the quantum anomalous Hall effect without needing an external magnetic field.
  • Researchers demonstrated crossed Andreev reflection in a system where a superconducting Nb electrode interacts with a chiral edge state, indicating superconducting pair formation.
  • Their findings suggest a significant link between superconductivity and chiral edge states, paving the way for further exploration of topological superconductivity and Majorana zero modes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!