Secondary metabolites are key in how organisms from all domains of life interact with their environment and each other. The iron-binding molecule pulcherrimin was described a century ago, but the genes responsible for its production in budding yeasts have remained uncharacterized. Here, we used phylogenomic footprinting on 90 genomes across the budding yeast subphylum Saccharomycotina to identify the gene cluster associated with pulcherrimin production. Using targeted gene replacements in , we characterized the four genes that make up the cluster, which likely encode two pulcherriminic acid biosynthesis enzymes, a pulcherrimin transporter, and a transcription factor involved in both biosynthesis and transport. The requirement of a functional putative transporter to utilize extracellular pulcherrimin-complexed iron demonstrates that pulcherriminic acid is a siderophore, a chelator that binds iron outside the cell for subsequent uptake. Surprisingly, we identified homologs of the putative transporter and transcription factor genes in multiple yeast genera that lacked the biosynthesis genes and could not make pulcherrimin, including the model yeast We deleted these previously uncharacterized genes and showed they are also required for pulcherrimin utilization in , raising the possibility that other genes of unknown function are linked to secondary metabolism. Phylogenetic analyses of this gene cluster suggest that pulcherrimin biosynthesis and utilization were ancestral to budding yeasts, but the biosynthesis genes and, subsequently, the utilization genes, were lost in many lineages, mirroring other microbial public goods systems that lead to the rise of cheater organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6205458PMC
http://dx.doi.org/10.1073/pnas.1806268115DOI Listing

Publication Analysis

Top Keywords

gene cluster
12
budding yeasts
12
genes
8
pulcherriminic acid
8
transporter transcription
8
transcription factor
8
putative transporter
8
biosynthesis genes
8
pulcherrimin
6
biosynthesis
5

Similar Publications

The term verruciform acanthotic vulvar intraepithelial neoplasia (vaVIN) was coined to describe HPV-independent p53-wildtype lesions with characteristic clinicopathologic characteristics and association with vulvar squamous cell carcinoma (vSCC). We aimed to expand on the molecular landscape of vaVIN using comprehensive sequencing and copy number variation profiling. vaVIN diagnosis in institutional cases was confirmed by a second review, plus negative p16 and wildtype p53 by immunohistochemistry.

View Article and Find Full Text PDF

Background: The thin descending limb (DTL) of the loop of Henle is crucial for urine concentration, as it facilitates passive water reabsorption. Despite its importance, little is known about how DTL cells form during kidney development. Single-cell RNA sequencing (scRNA-seq) studies have not definitively identified DTL cells in the developing mouse kidney.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Cockroaches are widely recognized as vectors for transmitting pathogenic microorganisms in hospital and community environments due to their movement between contaminated and human-occupied spaces. (. ), particularly methicillin-resistant (MRSA), is a primary global health concern because of its capacity to cause a wide range of infections and its resistance to many antibiotics.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PDCD1) and cluster of differentiation 274 (CD274) expression is implicated in escaping tumors from immune surveillance. Immune checkpoint inhibitors show promise in cancer therapy, yet their efficacy in glioblastomas, particularly with IDH1 mutations, remains unclear. This study analyzed two independent NGS datasets (n = 577 and n = 153) from TCGA to investigate the expression of PDCD1 and CD274 in glioblastomas and their relationship with IDH1 mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!