To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against , for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including C109 effectively cleared infection in the model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256756 | PMC |
http://dx.doi.org/10.1128/AAC.01231-18 | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.
Discov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 111 East 210Th Street, Bronx, NY, 10461, USA.
Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.
Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.
Discov Oncol
January 2025
School of Medicine, Southeast University, Nanjing, Jiangsu, China.
Background: Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear.
Methods: Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING.
Ann Hematol
January 2025
Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!