Dynamic Migration Modes of Collective Cells.

Biophys J

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China. Electronic address:

Published: November 2018

Collective cell migration occurs in a diversity of physiological processes such as wound healing, cancer metastasis, and embryonic morphogenesis. In the collective context, cohesive cells may move as a translational solid, swirl as a fluid, or even rotate like a disk, with scales ranging from several to dozens of cells. In this work, an active vertex model is presented to explore the regulatory roles of social interactions of neighboring cells and environmental confinements in collective cell migration in a confluent monolayer. It is found that the competition between two kinds of intercellular social interactions-local alignment and contact inhibition of locomotion-drives the cells to self-organize into various dynamic coherent structures with a spatial correlation scale. The interplay between this intrinsic length scale and the external confinement dictates the migration modes of collective cells confined in a finite space. We also show that the local alignment-contact inhibition of locomotion coordination can induce giant density fluctuations in a confluent cell monolayer without gaps, which triggers the spontaneous breaking of orientational symmetry and leads to phase separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224637PMC
http://dx.doi.org/10.1016/j.bpj.2018.09.010DOI Listing

Publication Analysis

Top Keywords

migration modes
8
modes collective
8
collective cells
8
collective cell
8
cell migration
8
cells
6
collective
5
dynamic migration
4
cells collective
4
migration occurs
4

Similar Publications

How peptide migration and fraction bioactivity are modulated by applied electrical current conditions during electromembrane process separation: A comprehensive machine learning-based peptidomic approach.

Food Res Int

January 2025

Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada. Electronic address:

Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and eventually enhancing peptide bioactivities require costly cascades of membranes.

View Article and Find Full Text PDF

The protein kinases CLK and ROCK play key roles in cell growth and migration, respectively, and are potential anticancer targets. ROCK inhibitors have been approved by the FDA for various diseases and CLK inhibitors are currently being trialed in the clinic as anticancer agents. Compounds with polypharmacology are desired, especially in oncology, due to the potential for high efficacy as well as addressing resistance issues.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Nuclear pore permeability and fluid flow are modulated by its dilation state.

Mol Cell

December 2024

Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!