Considerable toxic volatiles (CO and HCN) generation and high fire hazard has definitely compromised the application of thermoplastic polyurethane (TPU). Here, a novel functionalization strategy for bulky h-BN is adopted to obtain the multifunctional CPBN, aiming at the flame retardancy reinforcement of TPU. The multifunctional CPBN is successfully prepared via the wrapping of phytic acid doped polypyrrole shell, following with the adsorption of copper ions. The obviously decreased peak heat release rate, peak smoke production rate and total smoke production values, obtained from cone test, confirms the reduced fire hazard of TPU composite with CPBN. The dramatic suppressions on CO and HCN releases can also be observed from TG-IR test. Tensile test demonstrates that adding CPBN favors the reinforcement in mechanical property of TPU. Thus, the concurrent improvements in flame retardancy and mechanical performance are achieved by incorporating CPBN. This work opens up new avenues for the functionalization of h-BN, and thus facilitates its promising applications in polymer-matrix composite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.09.009 | DOI Listing |
Nanoscale
January 2025
Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China.
Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
This short review addresses the pressing issue of lung cancer among firefighters, a population facing unique occupational hazards such as smoke inhalation and asbestos exposure. With lung cancer being a leading global cause of death, the study emphasizes the disproportionate burden on firefighters. Notably, wildfire smoke, containing carcinogenic elements, poses a rising significant threat to firefighters' respiratory health.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh.
Chemical industries are highly vulnerable to accidental events or terrorist attacks due to their processing, storage, and transportation of explosive, flammable, and toxic materials. Major industrial risks include fire, explosion, and toxic chemical release. An effective risk evaluation system is essential to prevent accidents or terrorist attacks.
View Article and Find Full Text PDFEnviron Health (Wash)
January 2025
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.
View Article and Find Full Text PDFSci Total Environ
January 2025
Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.
Atmospheric contaminants from natural processes and anthropogenic activities pose a major problem to the environment. Here we analyze the dynamics of atmospheric and terrestrial contaminant concentrations in sediments containing chemical elements, such as nanoparticles (NPs) and ultrafine particles in hydrological sources of the Caribbean region of Colombia. Terrestrial sediments were collected from 2022 to 2024, and quantified for major chemical elements in the form of NPs and ultrafine particles in runoff receiving areas along the banks of Colombia's Ciénaga Grande in Santa Marta Bay, on the Isla de Salamanca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!