A 'pattern alternation paradigm' has been previously used in human ERP recordings to investigate the brain encoding of complex auditory regularities, but prior studies on regularity encoding in animal models to examine mechanisms of adaptation of auditory neuronal responses have used primarily oddball stimulus sequences to study stimulus-specific adaptation alone. In order to examine the sensitivity of neuronal adaptation to expected and unexpected events embedded in a complex sound sequence, we used a similar patterned sequence of sounds. We recorded single unit activity and compared neuronal responses in the rat inferior colliculus (IC) to sound stimuli conforming to pattern alternation regularity with those to stimuli in which occasional sound repetitions violated that alternation. Results show that some neurons in the rat inferior colliculus are sensitive to the history of patterned stimulation and to violations of patterned regularity, demonstrating that there is a population of subcortical neurons, located as early as the level of the midbrain, that can detect more complex stimulus regularities than previously supposed and that are as sensitive to complex statistics as some neurons in primary auditory cortex. Our findings indicate that these pattern-sensitive neurons can extract temporal and spectral regularities between successive acoustic stimuli. This is important because the extraction of regularities from the sound sequences will result in the development of expectancies for future sounds and hence, the present results are compatible with predictive coding models. Our results demonstrate that some collicular neurons, located as early as in the midbrain level, are involved in the generation and shaping of prediction errors in ways not previously considered and thus, the present findings challenge the prevailing view that perceptual organization of sound only emerges at the auditory cortex level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2018.10.012 | DOI Listing |
Cureus
December 2024
Division of Dental Anesthesiology, Faculty of Dentistry Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, JPN.
Background There are many reports of anatomical and physiological studies on trigeminal ganglion neurons, but few studies have analyzed temporal changes in the excitation of the trigeminal ganglion. This study aimed to establish an experimental system for spatial and temporal imaging analysis of the excitatory dynamics of trigeminal ganglion cells evoked by stimulation of a peripheral branch of the trigeminal nerve. Methods After excision of the trigeminal ganglion with the inferior alveolar nerve (IAN) from Sprague Dawley rats (seven to nine weeks old), 400-µm-thick slices of the trigeminal ganglion with the IAN were prepared.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.
View Article and Find Full Text PDFNeuroscience
January 2025
Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA. Electronic address:
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by motor symptoms such as tremors, rigidity, and bradykinesia. Magnetic resonance imaging (MRI) offers a non-invasive means to study PD and its progression. This study utilized the unilateral 6-hydroxydopamine (6-OHDA) rat model of parkinsonism to assess whether white matter microstructural integrity measured using advanced free-water diffusion tensor imaging metrics (fw-DTI) and gray matter density using voxel-based morphometry (VBM) can serve as imaging biomarkers of pathological changes following nigrostriatal denervation.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia.
: Live microorganisms, named probiotics, can improve overall physical well-being, particularly the oral cavity's health. , a popular probiotic, can influence the immune response by increasing the number of macrophages and plasma cells that play a role in traumatic ulcer healing. : To determine the expression of tumor necrosis factor-alpha (TNF-α) and the varied number of plasma cells and macrophages on a traumatic ulcer animal model treated with topical or systemic administration of a probiotic : Thirty-six healthy, 2-3-month-old male weighing 175-250 gram, were designed into control and topical and systemic administration probiotic groups.
View Article and Find Full Text PDFInflammation
January 2025
College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!