Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Paeonol is a natural flavonoid isolated from Moutan Cortex, which has been found to exhibit antioxidant, anti-apoptotic, anti-aging and anti-inflammatory bioactivities. Herein, we investigated the nephroprotective efficacy of paeonol against Pb-induced toxicity and elucidated the potential mechanisms. The results revealed that paeonol significantly ameliorated renal dysfunction and histology changes of Pb-treated mice. Paeonol inhibited oxidative stress and increased activities of antioxidant enzyme in the kidneys of Pb-treated mice. Paeonol decreased the nuclear factor-κB activation and over-production of inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Paeonol suppressed endoplasmic reticulum (ER) stress in kidneys of in the Pb treatment group and primary kidney mesangial cells. Moreover, paeonol increased the denosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation and decreased the activations of glycogen synthase kinase-3 (GSK-3), protein kinase RNA-like ER kinase (PERK), inositol-requiring protein-1 (IRE1), c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results were further confirmed in primary kidney mesangial cells. Taken together, these findings indicate that paeonol could protect kidney form Pb-induced injury by inhibiting oxidative stress, ER stress and inflammation via the AMPK and GSK-3 pathway. Paeonol might be a potential therapeutic agent to inhibit ER stress-associated inflammation in lead-stimulated kidneys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2018.10.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!