Two-dimensional (2D) materials consisting of heavy atoms with particular arrangements may host exotic quantum properties. Here, we report a unique 2D semiconducting binary compound, a Sn_{2}Bi atomic layer on Si(111), in which hexagons are formed by bonding Bi with a triangular network of Sn. Because of the unique honeycomb configuration, the heavy elements, and the energy-dependent hybridization between Sn and Bi, 2D Sn_{2}Bi not only shows strong spin-orbit coupling effects but also exhibits high electron-hole asymmetry: Nearly free hole bands and dispersionless flat electron bands coexist in the same system. By tuning the Fermi level, it is possible to preserve both nearly free and strongly localized charge carriers in the same 2D material, which provides an ideal platform for the studies of strongly correlated phenomena and possible applications in nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.126801DOI Listing

Publication Analysis

Top Keywords

strong spin-orbit
8
spin-orbit coupling
8
electron-hole asymmetry
8
binary two-dimensional
4
two-dimensional honeycomb
4
honeycomb lattice
4
lattice strong
4
coupling electron-hole
4
asymmetry two-dimensional
4
two-dimensional materials
4

Similar Publications

The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.

View Article and Find Full Text PDF

Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .

View Article and Find Full Text PDF

Regioisomeric π-Extended Nanographene with Long-lived Phosphorescence Afterglow.

Angew Chem Int Ed Engl

January 2025

NCL: CSIR National Chemical Laboratory, Organic Chemistry, Dr. Homi Bhabha Road, 411008, Pune, INDIA.

The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.

View Article and Find Full Text PDF

Aurophilic interaction-based aggregation of gem-digold(I) aryls towards high spin-orbit coupling and strong phosphorescence.

Nat Commun

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.

Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!