In recent experiments, time-dependent periodic fields are used to create exotic topological phases of matter with potential applications ranging from quantum transport to quantum computing. These nonequilibrium states, at high driving frequencies, exhibit the quintessential robustness against local disorder similar to equilibrium topological phases. However, proving the existence of such topological phases in a general setting is an open problem. We propose a universal effective theory that leverages on modern free probability theory and ideas in random matrices to analytically predict the existence of the topological phase for finite driving frequencies and across a range of disorder. We find that, depending on the strength of disorder, such systems may be topological or trivial and that there is a transition between the two. In particular, the theory predicts the critical point for the transition between the two phases and provides the critical exponents. We corroborate our results by comparing them to exact diagonalizations for driven-disordered 1D Kitaev chain and 2D Bernevig-Hughes-Zhang models and find excellent agreement. This Letter may guide the experimental efforts for exploring topological phases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.126803 | DOI Listing |
Materials (Basel)
December 2024
Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China.
The effects of aging treatment and the volume fraction of precipitation particles on the nano-hardness and nano-indentation morphology of Ni-based single crystal superalloys are systematically investigated. Using nano-indentation tests and atomic force microscopy (AFM), this study examined the mechanical properties and related physical mechanisms of Ni-based superalloys that have two volume fractions of precipitation particles and four aging treatment times. Results analyzed using the Oliver-Pharr method indicate that prolonging the aging time or increasing the volume fraction of particles enhances the nano-hardness and creep resistance of Ni-based single crystal superalloys and reduces the indentation-affected area.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Departamento de Física, Universidad de La Serena, Casilla 554, La Serena 1700000, Chile.
This study investigates the effect of incorporating heavy dopant atoms on the topological transitions in the energy spectrum of graphene, as well as on its thermodynamic properties. A tight-binding model is employed that incorporates a lattice composition parameter associated with the dopant's effect to obtain the electronic spectrum of graphene. Thus, the substitutional atoms in the lattice impact the electronic structure of graphene by altering the connectivity of the Dirac cones and the symmetry of the energy surface in their spectrum.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Instituto de Física Teórica, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
In this work, we propose an information theoretic order parameter able to characterize the presence and breaking of categorical symmetries in (1+1)-d rational conformal field theories (RCFTs). Specifically, we compute the quantum relative entropy between the ground states of RCFTs representing the critical point of phase transitions between different symmetry-broken phases of theories with categorical symmetries, and their symmetrized versions. We find that, at leading order in the high temperature limit, this relative entropy only depends on the expectation values of the quantum dimensions of the topological operators implementing the categorical symmetry.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Physics, Federal Technological Education Center of Minas Gerais, Belo Horizonte 30510-000, MG, Brazil.
In this paper, we analyzed the influence of the spin Nernst effect on quantum correlation in a layered ferrimagnetic model. In the study of three-dimensional ferrimagnets, the focus is on materials with a specific arrangement of spins, where the neighboring spins are parallel and the others are antiparallel. The anisotropic nature of these materials means that the interactions between spins depend on their relative orientations in different directions.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!