Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-risk pathogens such as Francisella tularensis and Yersinia pestis are categorized as highly hazardous organisms that can be used as biological weapons. Given the extreme infectivity of these potential biowarfare agents, a rapid, sensitive, cost-effective, and specific method for their detection is required. Here, we report the multiplexed amplification detection of genomic DNA from Francisella tularensis and Yersinia pestis. Amplification was achieved using isothermal recombinase polymerase amplification, exploiting tailed primers, followed by detection using a nucleic-acid lateral flow assay. Excess primers were removed using a novel fishing strategy, avoiding the use of postamplification purification that requires centrifugation and infers additional assay cost. The entire assay is completed in less than 1 h, achieving limits of detection of 243 fg (1.21 × 10 genome equivalent) and 4 fg (0.85 genome equivalent) for Francisella tularensis and Yersinia pestis, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b03105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!