DIGREM: an integrated web-based platform for detecting effective multi-drug combinations.

Bioinformatics

Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Published: May 2019

Motivation: Synergistic drug combinations are a promising approach to achieve a desirable therapeutic effect in complex diseases through the multi-target mechanism. However, in vivo screening of all possible multi-drug combinations remains cost-prohibitive. An effective and robust computational model to predict drug synergy in silico will greatly facilitate this process.

Results: We developed DIGREM (Drug-Induced Genomic Response models for identification of Effective Multi-drug combinations), an online tool kit that can effectively predict drug synergy. DIGREM integrates DIGRE, IUPUI_CCBB, gene set-based and correlation-based models for users to predict synergistic drug combinations with dose-response information and drug-treated gene expression profiles.

Availability And Implementation: http://lce.biohpc.swmed.edu/drugcombination.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513155PMC
http://dx.doi.org/10.1093/bioinformatics/bty860DOI Listing

Publication Analysis

Top Keywords

multi-drug combinations
12
effective multi-drug
8
synergistic drug
8
drug combinations
8
predict drug
8
drug synergy
8
combinations
5
digrem integrated
4
integrated web-based
4
web-based platform
4

Similar Publications

Febrile neutropenia is a major complication in patients with acute leukemia or those undergoing hematopoietic stem cell transplantation (HSCT). Understanding patient characteristics and susceptibility patterns in febrile neutropenia is essential for appropriate antimicrobial therapy. First-line agents should have Pseudomonas aeruginosa coverage, but with the increase in multi-drug resistant organisms, ceftazidime-avibactam has emerged as a new therapeutic option.

View Article and Find Full Text PDF

Novel therapeutic interventions are required to address the critical antimicrobial resistance caused by multidrug-resistant (MDR-PA) infections. This study examines the impact of combining delafloxacin with antibiotics on MDR-PA isolated from various samples. The minimum inhibitory concentrations (MICs) of delafloxacin, alone and in combination with other antibiotics, were determined against forty distinct MDR-PA isolates using the broth microdilution method.

View Article and Find Full Text PDF

Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2.

Elife

December 2024

UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States.

Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. In this study, human clinical samples and data were used to investigate genetic and epigenetic changes in lung cancer.

View Article and Find Full Text PDF

, a leading non-tuberculous mycobacterium (NTM) pathogen, causes chronic pulmonary infections, particularly in individuals with underlying lung conditions or immunosuppression. Current treatments involve prolonged multi-drug regimens with poor outcomes and significant side effects, highlighting the urgent need for improved therapies. Using a BALB/c mouse model of chronic pulmonary disease, we evaluated the efficacy of individual antibiotics-clarithromycin, clofazimine, and rifabutin-and combination regimens including clarithromycin+bedaquiline and clarithromycin+clofazimine+bedaquiline.

View Article and Find Full Text PDF

A cationic main-chain poly(carbonate-imidazolium) potent against Mycobacterium abscessus and other resistant bacteria in mice.

Biomaterials

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore; National Center for Infectious Diseases (NCID), 308442, Singapore. Electronic address:

The incidence of serious lung infections due to Mycobacterium abscessus, a worrying non-tuberculosis mycobacteria (NTM) species, is rising and has in some countries surpassed tuberculosis. NTM are ubiquitous in the environment and can cause serious lung infections in people who are immunocompromised or have pre-existing lung conditions. M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!