Capillary-force-driven self-assembly (CFSA) has been combined with many top-down fabrication methods to be alternatives to conventional single micro/nano manufacturing techniques for constructing complicated micro/nanostructures. However, most CFSA structures are fabricated on a rigid substrate, and little attention is paid to the tuning of CFSA, which means that the pattern of structures cannot be regulated once they are manufactured. Here, by combining femtosecond laser direct writing with CFSA, a flexible method is proposed to fabricate self-assembled hierarchical structures on a soft substrate. Then, the tuning of the self-assembly process is realized with a mechanical-stretching strategy. With this method, different patterns of tunable self-assembled structures are obtained before tuning and after release, which is difficult to achieve with other techniques. In addition, as a proof-of-concept application, this mechanical tunable self-assembly of microstructures on a soft substrate is used for smart displays and versatile micro-object trapping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b05024 | DOI Listing |
Soft Matter
January 2025
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.
Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
ACS Nano
December 2024
Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.
As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.
View Article and Find Full Text PDFGels
December 2024
Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China.
Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic FeO micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
January 2025
Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, Michigan, U.S.A.
A 54-year-old female with myelodysplastic syndrome on chemotherapy presented with 10 days of periocular erythema and edema worsening on oral antibiotics. Computed Tomography scan showed periorbital soft tissue swelling without postseptal extension or abscess. Intravenous broad-spectrum antibiotics were administered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!