The interplay between protein concentration and (observation) time has been investigated for the adsorption and crystal growth of the bacterial SbpA proteins on hydrophobic fluoride-functionalized SiO surfaces. For this purpose, atomic force microscopy (AFM) has been performed in real-time for monitoring protein crystal growth at different protein concentrations. Results reveal that (1) crystal formation occurs at concentrations above 0.08 µM and (2) the compliance of the formed crystal decreases by increasing protein concentration. All the crystal domains observed presented similar lattice parameters (being the mean value for the unit cell: a = 14.8 ± 0.5 nm, b = 14.7 ± 0.5 nm, γ = 90 ° ± 2). Protein film formation is shown to take place from initial nucleation points which originate a gradual and fast extension of the crystalline domains. The Avrami equation describes well the experimental results. Overall, the results suggest that protein-substrate interactions prevail over protein-protein interactions. RESEARCH HIGHLIGHTS: AFM enables to monitor protein crystallization in real-time. AFM high-resolution determines lattice parameters and viscoelastic properties. S-layer crystal growth rate increases with protein concentration. Avrami equation models protein crystal growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704365 | PMC |
http://dx.doi.org/10.1002/jemt.23075 | DOI Listing |
Ann Rheum Dis
January 2025
Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand. Electronic address:
Objectives: The dynamics of monosodium urate (MSU) crystal changes across a range of serum urate concentrations in people with gout are unknown. This study aimed to systematically examine the relationship between serum urate and changes in dual-energy CT (DECT) urate volume in people with gout and stable serum urate concentrations.
Methods: Individual participant data were analysed from three studies of people with gout.
ACS Appl Mater Interfaces
January 2025
Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.
View Article and Find Full Text PDFNanomicro Lett
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.
View Article and Find Full Text PDFAcc Chem Res
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.
Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!