Quantification of crystallinity using zero-loss filtered electron diffraction.

Microsc Res Tech

School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea.

Published: January 2019

The quantity of the crystalline phases present in a nanomaterial is an important parameter that governs the correlation between its properties and microstructure. However, quantification of crystallinity in nanoscale-level applications by conventional methods (Raman spectroscopy and X-ray diffraction) is difficult because of the spatial limitations of sampling. Therefore, we propose a technique that involves using energy-filtered electron diffraction in transmission electron microscopy which offers improved spatial resolution. The degree of crystallinity (DOC) was calculated by separating the crystalline and amorphous intensities from the total intensity histogram acquired by the azimuthal averaging of the zero-loss filtered signals from electron diffraction. In order to validate the method, it was demonstrated that the DOC calculated by zero-loss filtered electron diffraction was consistent with the DOC measured by the area ratio using an amorphous silicon on crystalline silicon standard sample. In addition, the results obtained from zero-loss filtered and conventional electron diffractions were compared. The zero-loss filtered electron diffraction successfully provided the reliable results of the crystallinity quantification. In contrast, the DOC measured using conventional electron diffraction yielded extremely variable results. Therefore, our results provide a crystallinity quantification technique that can extract quantitative information about crystallinity of nanoscale devices by using zero-loss filtered electron diffraction with better reliability than conventional electron diffraction. RESEARCH HIGHLIGHTS: The degree of crystallinity can be measured by separating the crystalline and amorphous intensities from the total intensity histogram acquired by the azimuthal averaging of the zero-loss filtered signals from selected area electron diffraction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23065DOI Listing

Publication Analysis

Top Keywords

electron diffraction
36
zero-loss filtered
28
filtered electron
16
conventional electron
12
electron
11
diffraction
10
quantification crystallinity
8
degree crystallinity
8
doc calculated
8
separating crystalline
8

Similar Publications

Biocompatible TA4 and TC4ELI with excellent mechanical properties and corrosion resistance via multiple ECAP.

Biomed Mater

December 2024

State Key Laboratory of Nuclear Physics and Technology, Department of Technical Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China.

Titanium (Ti), characterized by its exceptional mechanical properties, commendable corrosion resistance and biocompatibility, has emerged as the principal functional materials for implants in biomedical and clinical applications. However, the Ti-6Al-4V (TC4ELI) alloy has cytotoxicity risks, whereas the strength of the existing industrially pure titanium TA4 is marginally inadequate and will significantly limit the scenarios of medical implants. Herein, we prepared ultrafine-grained industrial-grade pure titanium TA4 and titanium alloy TC4ELI via the equal channel angular pressing method, in which the TA4-1 sample has ultrahigh strength of 1.

View Article and Find Full Text PDF

Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage.

Small

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.

View Article and Find Full Text PDF

Mn-rich disordered rocksalt materials with Li-excess (DRX) materials have emerged as a promising class of earth-abundant and energy-dense next-generation cathode materials for lithium-ion batteries. Recently, an electrochemical transformation to a spinel-like "δ" phase has been reported in Mn-rich DRX materials, with improved capacity, rate capability, and cycling stability compared with previous DRX compositions. However, this transformation unfolds slowly over the course of cycling, complicating the development and understanding of these materials.

View Article and Find Full Text PDF

Structural, morphological, mechanical, and electrical studies of N. nucifera fibres.

Int J Biol Macromol

December 2024

Center for Material Science, Vijnana Bhavan, Manasagangotri, University of Mysore, Mysuru 570017, India.

The Powder X-ray diffraction (PXRD) data of Nelumbo Nucifera fibre is utilized to study multifaceted properties. Rietveld refinement was carried out along with cellulose phase. The crystallite size was computed using the Scherrer equation, and through first principle calculations, it has been illustrated and concluded that the size is not ellipsoidal, as previously suggested by other researchers; rather, it exhibits a multidimensional shape.

View Article and Find Full Text PDF

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates as oxidase mimetics for ratiometric colorimetric detection of nitrite.

Mikrochim Acta

December 2024

College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.

Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!