This report is related to the research article entitled "B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy" (Yamamoto et al., in press). Herein we provide the data regarding pig artery patch xenotransplantation into the baboon׳s aorta, trough levels of tacrolimus and rapamycin in the blood after transplantation, analysis of B cell phenotype on the basis of IgD and CD27 expression in the blood, and analysis of T cell phenotype on the basis of CD28 and CD95 expression in the blood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171326PMC
http://dx.doi.org/10.1016/j.dib.2018.08.213DOI Listing

Publication Analysis

Top Keywords

pig artery
12
artery patch
12
cell phenotypes
8
phenotypes baboons
8
baboons pig
8
patch grafts
8
grafts receiving
8
receiving conventional
8
conventional immunosuppressive
8
analysis cell
8

Similar Publications

Background: Extracorporeal life support (ECLS) provides organ perfusion in refractory cardiac arrest but during the initiation of ECLS mean arterial pressure (MAP) and carotid flow may be suboptimal due to hypotension and/or insufficient flow. We hypothesized that cardiopulmonary resuscitation (CPR) in addition to ECLS may increase carotid flow and MAP compared to ECLS alone.

Methods: Observational pilot study comparing hemodynamic parameters before and after CPR cessation in pigs supported by ECLS for experimental refractory cardiac arrest.

View Article and Find Full Text PDF

Evaluating the effectiveness of handheld ultrasound in primary blast lung injury: a comprehensive study.

Sci Rep

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.

The incidence of blast injuries has been rising globally, particularly affecting the lungs due to their vulnerability. Primary blast lung injury (PBLI) is associated with high morbidity and mortality rates, while early diagnostic methods are limited. With advancements in medical technology, and portable handheld ultrasound devices, the efficacy of ultrasound in detecting occult lung injuries early remains unclear.

View Article and Find Full Text PDF

Negative Pressure Ventilation Ex-Situ Lung Perfusion Preserves Porcine and Human Lungs for 36-Hours.

Clin Transplant

January 2025

Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.

Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.

Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.

View Article and Find Full Text PDF

Background: Telesurgery has been made increasingly possible with the advancements in robotic surgical platforms and network connectivity. However, long-distance transnational complex robotic surgeries such as gastrectomy have yet to be attempted.

Methods: Multiple transnational network connections by Science Innovation Network (SINET), Japan Gigabit Network (JGN), and Arterial Research and Education Network in Asia-Pacific (ARENA-PAC) were established and tested by multiple surgeons in a dry box model.

View Article and Find Full Text PDF

Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!