Learning in the Reproducing Kernel Hilbert Space (RKHS) has been widely used in many scientific disciplines. Because a RKHS can be very flexible, it is common to impose a regularization term in the optimization to prevent overfitting. Standard RKHS learning employs the squared norm penalty of the learning function. Despite its success, many challenges remain. In particular, one cannot directly use the squared norm penalty for variable selection or data extraction. Therefore, when there exists noise predictors, or the underlying function has a sparse representation in the dual space, the performance of standard RKHS learning can be suboptimal. In the literature, work has been proposed on how to perform variable selection in RKHS learning, and a data sparsity constraint was considered for data extraction. However, how to learn in a RKHS with both variable selection and data extraction simultaneously remains unclear. In this paper, we propose a unified RKHS learning method, namely, DOuble Sparsity Kernel (DOSK) learning, to overcome this challenge. An efficient algorithm is provided to solve the corresponding optimization problem. We prove that under certain conditions, our new method can asymptotically achieve variable selection consistency. Simulated and real data results demonstrate that DOSK is highly competitive among existing approaches for RKHS learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168218PMC
http://dx.doi.org/10.4310/SII.2018.v11.n3.a1DOI Listing

Publication Analysis

Top Keywords

variable selection
20
rkhs learning
20
data extraction
16
selection data
12
learning
9
double sparsity
8
sparsity kernel
8
rkhs
8
standard rkhs
8
squared norm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!