Background: In a prior trial of late sodium channel inhibition (ranolazine) among symptomatic subjects without obstructive coronary artery disease (CAD) and limited myocardial perfusion reserve index (MPRI), we observed no improvement in angina or MPRI, overall. Here we describe the clinical characteristics and myocardial perfusion responses of a pre-defined subgroup who had coronary flow reserve (CFR) assessed invasively.
Methods: Symptomatic patients without obstructive CAD and limited MPRI in a randomized, double-blind, crossover trial of ranolazine vs. placebo were subjects of this prespecified substudy. Because we had previously observed that adverse outcomes and beneficial treatment responses occurred in those with lower CFR, patients were subgrouped by CFR <2.5 vs ≥2.5. Symptoms were assessed using the Seattle Angina Questionnaire and the SAQ-7, and left-ventricular volume and MPRI were assessed by magnetic resonance imaging (MRI). Coronary angiograms, CFR, and MRI data were analyzed by core labs masked to treatment and patient characteristics.
Results: During qualifying coronary angiography, 81 patients (mean age 55 years, 98% women) had invasively determined CFR 2.69 ± 0.65 (mean ± SD; range 1.4-5.5); 43% (n = 35) had CFR <2.5. Demographic and symptomatic findings did not differ comparing CFR subgroups. Those with low CFR had improved angina (p = 0.04) and midventricular MPRI (p = 0.03) with ranolazine vs placebo. Among patients with low CFR, reduced left-ventricular end-diastolic volume predicted a beneficial angina response.
Conclusions: Symptomatic patients with CFR <2.5 and no obstructive CAD had improved angina and myocardial perfusion with ranolazine, supporting the hypothesis that the late sodium channel is important in management of coronary microvascular dysfunction.
Trial Registration: clinicaltrials.gov Identifier NCT01342029.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324974 | PMC |
http://dx.doi.org/10.1016/j.ijcard.2018.09.081 | DOI Listing |
Acad Radiol
December 2024
Department of Radiology, Cardiothoracic Imaging, University of Washington, Seattle, Washington (H.C., K.O., S.A.); Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran (A.A., A.S., A.G.J., S.A.). Electronic address:
Background: Systemic sclerosis (SSc) is an immune dysregulation disorder affecting multiple organs. Cardiac involvement, prevalently myocardial, is associated with poor outcomes in SSc patients. Several investigations explored the role of cardiac magnetic resonance (CMR) imaging in the diagnosis of scleroderma-related cardiomyopathy and analyzed the clinical, radiologic, and pathologic correlations utilizing CMR examinations.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2024
Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA.
Cardiogenic shock (CS) in acute myocardial infarction (AMI) is a life-threatening syndrome characterized by systemic hypoperfusion that can quickly progress to multiorgan failure and death. Various devices and configurations of mechanical circulatory support (MCS) exist to support patients, each with unique pathophysiological characteristics. The Intra-aortic balloon pump can improve coronary perfusion, decrease afterload, and indirectly augment cardiac output.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100006 Beijing, China.
Background: Quantitative flow ratio (QFR) can identify functionally significant coronary disease non-invasively. Myocardial contrast echocardiography (MCE) is a non-invasive and effective procedure for detecting abnormalities in hemodynamic coronary artery stenosis. Currently, there is no research confirming the correlation between MCE and QFR.
View Article and Find Full Text PDFEur Heart J Imaging Methods Pract
July 2024
Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, Avenue Cote de Nacre, 14000 Caen, France.
Int J Cardiovasc Imaging
December 2024
Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Leeds, UK.
The pathophysiology of myocardial injury following COVID-19 remains uncertain. COVID-HEART was a prospective, multicentre study utilising cardiovascular magnetic resonance (CMR) to characterise COVID-related myocardial injury. In this pre-specified analysis, the objectives were to examine (1) the frequency of myocardial ischaemia following COVID-19, and (2) the association between ischaemia and myocardial injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!