Introduction: Some traditional bariatric surgery procedures may lead to functional gut shortening, which may unsettle the fine-tuned gastrointestinal physiology and affect gut microbiota balance.

Purpose: Evaluate the gut microbiota behavior in rat models facing gut shortening due to intestinal bypass.

Materials And Methods: Wistar rats (n = 17) were randomly distributed in three groups: (1) sham group (n = 5); (2) blind loop group (n = 6); and (3) resection group (n = 6). Intestinal samples and feces were analyzed to measure bacterial concentrations (small intestinal bacterial overgrowth-SIBO) 12 weeks after the experimental procedures. Bacterial translocation (BT) was investigated in the mesenteric lymph node (MLN), liver, spleen, and lung of the animals. In addition, inflammatory aspects were investigated in their liver and small bowel through histological analysis.

Results: Regardless of blind loop, gut shortening groups recorded similar high level of bacterial concentrations in intestine compartments, greater than that of the sham group (p ≤ 0.05). BT was only observed in the MLN of gut shortening models, with higher percentage in the blind loop group (p ≤ 0.05). The gut and liver histopathological analysis showed similar low-grade chronic inflammation in both gut shortening groups, likely associated with SIBO/BT events.

Conclusion: Sustained SIBO/BT was associated with proximal gut shortening in half regardless of blind loop, whereas the GI tract's ability to restore gut microbiota balance after a surgical challenge on the small bowel appears to be linked to the functional remaining gut.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11695-018-3540-1DOI Listing

Publication Analysis

Top Keywords

gut shortening
24
blind loop
20
gut microbiota
16
gut
12
small bowel
12
sham group
8
loop group
8
group n = 6
8
bacterial concentrations
8
shortening groups
8

Similar Publications

Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.

Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.

View Article and Find Full Text PDF

Saccharomyces boulardii Ameliorates LPS-Induced Amyloidogenesis in Rats.

Probiotics Antimicrob Proteins

December 2024

Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19839-63113, Iran.

Gut brain axis can affect the incidence of Alzheimer's disease (AD). Probiotics restore the homeostasis of gut dysbiosis and prevent AD. Here, we evaluated the impact of Saccharomyces boulardii on rats with lipopolysaccharide (LPS)-induced amyloidogenesis.

View Article and Find Full Text PDF

A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster.

Nat Commun

December 2024

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.

Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein.

View Article and Find Full Text PDF

The effect of workplace environment on coal miners' gut microbiota in a mouse model.

Front Microbiol

December 2024

Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.

The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Inflammatory Bowel Disease (IBD), encompassing Ulcerative Colitis (UC) and Crohn's Disease (CD), stems from a multifaceted interaction of hereditary, immunological, ecological, and microbial elements. Current treatments have limitations, necessitating new therapeutic approaches.

Aim Of The Study: This study investigates the safeguarding impacts and fundamental processes of extracts of Gleditsia sinensis Lam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!